Pathogenic Role of mTOR Signaling in Cardiometabolic Disease: Implications for Heart, Liver, and Kidney Dysfunction

. 2025 Dec 15 ; 74 (6) : 891-907.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41406476

Cardiometabolic diseases (CMDs), which include hypertension, atherosclerosis, chronic kidney disease, type 2 diabetes mellitus (T2DM), metabolic syndrome, and obesity, significantly affect the heart, liver, and kidneys. A key player in the pathogenesis of these diseases is the serine-threonine kinase enzyme mTOR (mammalian target of rapamycin), which affects cellular metabolic processes through its signaling. mTOR is composed of two separate complexes: mTORC1 and mTORC2. Both complexes are essential for cardiac development and pathological stress responses. Constant activation of mTORC1 can be harmful, contributing to cardiac hypertrophy and remodeling, which can lead to heart failure. Conversely, mTORC2 supports the survival and function of cardiomyocytes during stressful situations. In the liver, mTOR signaling plays a crucial role in lipid metabolism and insulin sensitivity, both of which are affected by diet. Activation of mTORC1 in hepatocytes can cause hepatic steatosis, dyslipidemia, and insulin resistance, which are characteristics of metabolic dysfunction and type 2 diabetes mellitus (T2DM). Conversely, mTORC2 protects against steatohepatitis. Reducing mTORC1 activity in the liver improves these metabolic disturbances. Altered mTOR signaling may result from abnormal feeding states, which affect the metabolic and physiological functions of the liver and kidneys. In diabetic nephropathy, overstimulation of mTORC1 in the kidneys leads to hypertrophy, proteinuria, and eventual loss of renal function. Meanwhile, mTORC2 participates in renal ion transport. Treatment with mTOR inhibitors has ameliorated renal dysfunction in preclinical models of diabetic kidney dysfunction and the Dahl S model of salt hypertension. This review emphasizes the critical role of mTOR in the pathophysiology of cardiometabolic diseases in major organs and models. Targeting mTOR signaling pathways is a promising approach to mitigate the adverse effects of CMD on the heart, liver, and kidneys. Key words Cardiometabolic disease " mTOR " Dyslipidemia " Salt sensitive " Hypertension.

Zobrazit více v PubMed

Choi MR. Inside the pathophysiological mechanisms of cardiometabolic diseases: the other pandemic to fight. Pflugers Arch - Eur J Physiol. 2022;474:1–4. doi: 10.1007/s00424-021-02658-4. PubMed DOI

Kirk EP, Klein S. Pathogenesis and pathophysiology of the cardiometabolic syndrome. J Clin Hypertens (Greenwich) 2009;11:761–765. doi: 10.1111/j.1559-4572.2009.00054.x. PubMed DOI PMC

Liu Y, Gao Y, Yan G, Liu Y, Tian W, Zhang Y, Wang S, Yu B. Global disease burden analysis of Cardiometabolic disease attributable to second-hand smoke exposure from 1990 to 2040. Am J Prevent Cardiol. 2025;21:100902. doi: 10.1016/j.ajpc.2024.100902. PubMed DOI PMC

Kario K, Okura A, Hoshide S, Mogi M. The WHO Global report 2023 on hypertension warning the emerging hypertension burden in globe and its treatment strategy. Hypertens Res. 2024;47:1099–1102. doi: 10.1038/s41440-024-01622-w. PubMed DOI

Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother. 2021;137:111315. doi: 10.1016/j.biopha.2021.111315. PubMed DOI

Ogurtsova K, Guariguata L, Barengo NC, Ruiz PL-D, Sacre JW, Karuranga S, Sun H, Boyko EJ, Magliano DJ. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pr. 2022;183:109118. doi: 10.1016/j.diabres.2021.109118. PubMed DOI

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pr. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119. PubMed DOI PMC

Islam MS, Wei P, Suzauddula M, Nime I, Feroz F, Acharjee M, Pan F. The interplay of factors in metabolic syndrome: understanding its roots and complexity. Mol Med (Camb Mass) 2024;30:279. doi: 10.1186/s10020-024-01019-y. PubMed DOI PMC

Rohm TV, Meier DT, Olefsky JM, Donath MY.Inflammation in obesity, diabetes, and related disorders Immunity 20225531–55.. 10.1016/j.immuni.2021.12.013 PubMed PMC

Sidhu SK, Aleman JO, Heffron SP.Obesity duration and cardiometabolic disease Arterioscler Thromb Vasc Biol 2023431764–1774.. 10.1161/atvbaha.123.319023 PubMed PMC

Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–1428. doi: 10.1016/s0140-6736(05)66378-7. PubMed DOI

Lancel S, Montaigne D, Marechal X, Marciniak C, Hassoun SM, Decoster B, Ballot C, Blazejewski C, Corseaux D, Lescure B, Motterlini R, Neviere R. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. plosone. 2012;7:e41836. doi: 10.1371/journal.pone.0041836. PubMed DOI PMC

Baron AD. Hemodynamic actions of insulin. Am J Physiol. 1994;267:E187–202. doi: 10.1152/ajpendo.1994.267.2.E187. PubMed DOI

Ramchandra R, Barrett CJ, Malpas SC. Nitric oxide and sympathetic nerve activity in the control of blood pressure. ClinExpPharmacolPhysiol. 2005;32:440–446. doi: 10.1111/j.1440-1681.2005.04208.x. PubMed DOI

Babazono T, Takahashi C, Iwamoto Y. Definition of microalbuminuria in first-morning and random spot urine in diabetic patients. Diabetes Care. 2004;27:1838–1839. doi: 10.2337/diacare.27.7.1838. PubMed DOI

Fuchs FD, Whelton PK. High Blood Pressure and Cardiovascular Disease. Hypertens. 2020;75:285–292. doi: 10.1161/hypertensionaha.119.14240. PubMed DOI PMC

Vairappan B. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress. WorldJ Hepatol. 2015;7:443–459. doi: 10.4254/wjh.v7.i3.443. PubMed DOI PMC

Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mähler A, Balogh A, Markó L, Vvedenskaya O, Kleiner FH, Tsvetkov D, Klug L, Costea PI, Sunagawa S, Maier L, Rakova N, Schatz V, Neubert P, Frätzer C, Krannich A, Gollasch M, Grohme DA, Côrte-Real BF, Gerlach RG, Basic M, Typas A, Wu C, Titze JM, Jantsch J, Boschmann M, Dechend R, Kleinewietfeld M, Kempa S, Bork P, Linker RA, Alm EJ, Müller DN. Salt-responsive gut commensal modulates T(H)17 axis and disease. Nature. 2017;551:585–589. doi: 10.1038/nature24628. PubMed DOI PMC

Ebner N, Földes G, Schomburg L, Renko K, Springer J, Jankowska EA, Sharma R, Genth-Zotz S, Doehner W, Anker SD, von Haehling S. Lipopolysaccharide responsiveness is an independent predictor of death in patients with chronic heart failure. J Mol Cell Cardiol. 2015;87:48–53. doi: 10.1016/j.yjmcc.2015.07.029. PubMed DOI

Gabriel CL, Ferguson JF. Gut microbiota and microbial metabolism in early risk of cardiometabolic disease. circres. 2023;132:1674–1691. doi: 10.1161/CIRCRESAHA.123.322055. PubMed DOI PMC

Adiels M, Olofsson S-O, Taskinen M-R, Borén J. Overproduction of very low–density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28:1225–1236. doi: 10.1161/ATVBAHA.107.160192. PubMed DOI

Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell. 2001;104:503–516. doi: 10.1016/S0092-8674(01)00238-0. PubMed DOI

Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347:1557–1565. doi: 10.1056/NEJMoa021993. PubMed DOI

Zhang T, Li S, Bazzano L, He J, Whelton P, Chen W. Trajectories of childhood blood pressure and adult left ventricular hypertrophy: the bogalusa heart study. Hypertens. 2018;72:93–101. doi: 10.1161/hypertensionaha.118.10975. PubMed DOI PMC

Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52:1836–1846. doi: 10.1002/hep.24001. PubMed DOI

Shi T, Kobara H, Oura K, Masaki T. Mechanisms underlying hepatocellular carcinoma progression in patients with type 2 diabetes. J Hepatocell Carcinoma. 2021;8:45–55. doi: 10.2147/JHC.S274933. PubMed DOI PMC

10 Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42:S103–s123. doi: 10.2337/dc19-S010. PubMed DOI

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/bf00280883. PubMed DOI

Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, Goldberg R, Heidenreich PA, Hlatky MA, Jones DW, Lloyd-Jones D, Lopez-Pajares N, Ndumele CE, Orringer CE, Peralta CA, Saseen JJ, Smith SC, Jr, Sperling L, Virani SS, Yeboah J. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation. 2019;139:e1082–e1143. doi: 10.1161/cir.0000000000000625. PubMed DOI PMC

Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–979. doi: 10.1056/nejm199704033361401. PubMed DOI

Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–867. doi: 10.1038/nature05485. PubMed DOI

Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, Omland T, Storrow AB, Abraham WT, Wu AH, Clopton P, Steg PG, Westheim A, Knudsen CW, Perez A, Kazanegra R, Herrmann HC, McCullough PA. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–167. doi: 10.1056/NEJMoa020233. PubMed DOI

Diehm N, Diehm C. Subclinical atherosclerosis of lower limb arteries: a strong predictor for cardiovascular mortality. EurHeartJ. 2006;27:2495–2496. doi: 10.1093/eurheartj/ehl283. PubMed DOI

Dowman JK, Tomlinson JW, Newsome PN. Systematic review: the diagnosis and staging of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. AlimentPharmTher. 2011;33:525–540. doi: 10.1111/j.1365-2036.2010.04556.x. PubMed DOI PMC

Bruha R, Vitek L, Smid V. Osteopontin - A potential biomarker of advanced liver disease. Ann Hepatol. 2020;19:344–352. doi: 10.1016/j.aohep.2020.01.001. PubMed DOI

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006. PubMed DOI PMC

Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, Jafar T, Jassal SK, Landman GW, Muntner P, Roderick P, Sairenchi T, Schöttker B, Shankar A, Shlipak M, Tonelli M, Townend J, van Zuilen A, Yamagishi K, Yamashita K, Gansevoort R, Sarnak M, Warnock DG, Woodward M, Ärnlöv J. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 2015;3:514–525. doi: 10.1016/s2213-8587(15)00040-6. PubMed DOI PMC

Shlipak MG, Sarnak MJ, Katz R, Fried LF, Seliger SL, Newman AB, Siscovick DS, Stehman-Breen C. Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med. 2005;352:2049–2060. doi: 10.1056/NEJMoa043161. PubMed DOI

Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Schölmerich J, Bollheimer LC. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol. 2006;36:485–501. doi: 10.1677/jme.1.01909. PubMed DOI

Panchal SK, Poudyal H, Iyer A, Nazer R, Alam A, Diwan V, Kauter K, Sernia C, Campbell F, Ward L, Gobe G, Fenning A, Brown L. High-carbohydrate, high-fat diet–induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol. 2011;57:611–624. doi: 10.1097/FJC.0b013e3181feb90a. PubMed DOI

Giussani M, Lieti G, Orlando A, Parati G, Genovesi S. Fructose intake, hypertension and cardiometabolic risk factors in children and adolescents: from pathophysiology to clinical aspects a narrative review. Front Med. 2022;9:792949. doi: 10.3389/fmed.2022.792949. PubMed DOI PMC

Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52:313–320. doi: 10.1016/j.phrs.2005.05.004. PubMed DOI

Walker BR. Glucocorticoids and cardiovascular disease. Eur J Endocrinol. 2007;157:545–559. doi: 10.1530/eje-07-0455. PubMed DOI

Aleixandre de Artiñano A, Miguel Castro M. Experimental rat models to study the metabolic syndrome. Br J Nutr. 2009;102:1246–1253. doi: 10.1017/s0007114509990729. PubMed DOI

Zicha J, Dobešová Z, Vokurková M, Rauchová H, Hojná S, Kadlecová M, Behuliak M, Vaněčková I, Kuneš J. Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res. 2012;61(Suppl 1):S35–S87. doi: 10.33549/physiolres.932363. PubMed DOI

Drenjančević-Perić I, Jelaković B, Lombard JH, Kunert MP, Kibel A, Gros M. High-salt diet and hypertension: focus on the renin-angiotensin system. KidneyBloodPressRes. 2011;34:1–11. doi: 10.1159/000320387. PubMed DOI PMC

Burnier M, Phan O, Wang Q. High salt intake: a cause of blood pressure-independent left ventricular hypertrophy? Nephrol Dial Transplant. 2007;22:2426–2429. doi: 10.1093/ndt/gfm321. PubMed DOI

Ohta Y, Tsuchihashi T, Kiyohara K, Oniki H. High salt intake promotes a decline in renal function in hypertensive patients: a 10-year observational study. Hypertens Res. 2013;36:172–176. doi: 10.1038/hr.2012.155. PubMed DOI

Osimo EF, Sweeney M, de Marvao A, Berry A, Statton B, Perry BI, Pillinger T, Whitehurst T, Cook SA, O’Regan DP, Thomas EL, Howes OD. Adipose tissue dysfunction, inflammation, and insulin resistance: alternative pathways to cardiac remodelling in schizophrenia. A multimodal, case-control study. Transl Psychiatry. 2021;11:614. doi: 10.1038/s41398-021-01741-9. PubMed DOI PMC

Wang G, Yeung CK, Wong WY, Zhang N, Wei YF, Zhang JL, Yan Y, Wong CY, Tang JJ, Chuai M, Lee KK, Wang LJ, Yang X. Liver fibrosis can be induced by high salt intake through excess reactive oxygen Species (ROS) production. J Agric Food Chem. 2016;64:1610–1617. doi: 10.1021/acs.jafc.5b05897. PubMed DOI

Li Y, Lyu Y, Huang J, Huang K, Yu J. Transcriptome sequencing reveals high-salt diet-induced abnormal liver metabolic pathways in mice. BMC Gastroenterol. 2021;21:335. doi: 10.1186/s12876-021-01912-4. PubMed DOI PMC

Pfeffer MA, McMurray JJ, Velazquez EJ, Rouleau J-L, Køber L, Maggioni AP, Solomon SD, Swedberg K, Van de Werf F, White H, Leimberger JD, Henis M, Edwards S, Zelenkofske S, Sellers MA, Califf RM Valsartan in Acute Myocardial Infarction Trial Investigators. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349:1893–1906. doi: 10.1056/NEJMoa032292. PubMed DOI

Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342:145–153. doi: 10.1056/nejm200001203420301. PubMed DOI

Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–1681. doi: 10.1016/s0140-6736(10)61350-5. PubMed DOI PMC

Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34) UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:854–865. doi: 10.1016/S0140-6736(98)07037-8. PubMed DOI

Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375:311–322. doi: 10.1056/NEJMoa1603827. PubMed DOI PMC

Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720. PubMed DOI

Arora M, Kutinová Canová N, Farghali H. mTOR as an eligible molecular target for possible pharmacological treatment of nonalcoholic steatohepatitis. Eur J Pharmacol. 2022;921:174857. doi: 10.1016/j.ejphar.2022.174857. PubMed DOI

Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369:756–758. doi: 10.1038/369756a0. PubMed DOI

Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J, Schulze A. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene. 2005;24:6465–6481. doi: 10.1038/sj.onc.1208802. PubMed DOI

Laplante M, Sabatini DM. mTOR signaling at a glance. JCellSci. 2009;122:3589–3594. doi: 10.1242/jcs.051011. PubMed DOI PMC

Porstmann T, Santos CR, Lewis C, Griffiths B, Schulze A. A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. BiochemSocTrans. 2009;37:278–283. doi: 10.1042/bst0370278. PubMed DOI

Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–1174. doi: 10.1172/jci13505. PubMed DOI PMC

Chang GR, Chiu YS, Wu YY, Chen WY, Liao JW, Chao TH, Mao FC. Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice. JPharmacolSci. 2009;109:496–503. doi: 10.1254/jphs.08215fp. PubMed DOI

Wang W, Yan J, Wang H, Shi M, Zhang M, Yang W, Peng C, Li H. Rapamycin ameliorates inflammation and fibrosis in the early phase of cirrhotic portal hypertension in rats through inhibition of mTORC1 but not mTORC2. plosone. 2014;9:e83908. doi: 10.1371/journal.pone.0083908. PubMed DOI PMC

Wang Y, Shi M, Fu H, Xu H, Wei J, Wang T, Wang X. Mammalian target of the rapamycin pathway is involved in non-alcoholic fatty liver disease. Mol Med Rep. 2010;3:909–915. doi: 10.3892/mmr.2010.365. PubMed DOI

Hagiwara A, Cornu M, Cybulski N, Polak P, Betz C, Trapani F, Terracciano L, Heim MH, Rüegg MA, Hall MN. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. CellMetab. 2012;15:725–738. doi: 10.1016/j.cmet.2012.03.015. PubMed DOI

Hung CM, Calejman CM, Sanchez-Gurmaches J, Li H, Clish CB, Hettmer S, Wagers AJ, Guertin DA. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep. 2014;8:256–271. doi: 10.1016/j.celrep.2014.06.007. PubMed DOI PMC

Yuan M, Pino E, Wu L, Kacergis M, Soukas AA. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J biol chem. 2012;287:29579–29588. doi: 10.1074/jbc.M112.386854. PubMed DOI PMC

Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, Hall MN. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. NatCellBiol. 2004;6:1122–1128. doi: 10.1038/ncb1183. PubMed DOI

Arora M, Pavlíková Z, Kučera T, Kozlík P, Šopin T, Vacík T, LĽupták M, Duda M, Slanař O, Kutinová Canová N. Pharmacological effects of mTORC1/C2 inhibitor in a preclinical model of NASH progression. BiomedPharmacother. 2023;167:115447. doi: 10.1016/j.biopha.2023.115447. PubMed DOI

Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, Debreczeni-Mór A, Lindenmeyer MT, Rastaldi MP, Hartleben G, Wiech T, Fornoni A, Nelson RG, Kretzler M, Wanke R, Pavenstädt H, Kerjaschki D, Cohen CD, Hall MN, Rüegg MA, Inoki K, Walz G, Huber TB. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011;121:2197–2209. doi: 10.1172/jci44774. PubMed DOI PMC

Lieberthal W, Levine JS. The role of the mammalian target of rapamycin (mTOR) in renal disease. J Am Soc Nephrol. 2009;20:2493–2502. doi: 10.1681/asn.2008111186. PubMed DOI

Grahammer F, Nesterov V, Ahmed A, Steinhardt F, Sandner L, Arnold F, Cordts T, Negrea S, Bertog M, Ruegg MA, Hall MN, Walz G, Korbmacher C, Artunc F, Huber TB. mTORC2 critically regulates renal potassium handling. J Clin Investig. 2016;126:1773–1782. doi: 10.1172/jci80304. PubMed DOI PMC

Duan X-P, Zheng J-Y, Jiang S-P, Wang M-X, Zhang C, Chowdhury T, Wang W-H, Lin D-H. mTORc2 in Distal Convoluted Tubule and Renal K+ Excretion during High Dietary K+ Intake. J Am Soc Nephrol. 2024;35(9):1149–1163. doi: 10.1681/ASN.0000000000000406. PubMed DOI PMC

Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc NatlAcadSciUSA. 2006;103:5466–5471. doi: 10.1073/pnas.0509694103. PubMed DOI PMC

Li J, Ren J, Liu X, Jiang L, He W, Yuan W, Yang J, Dai C. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 2015;88:515–527. doi: 10.1038/ki.2015.119. PubMed DOI PMC

Fu Y, Xiang Y, Zha J, Chen G, Dong Z. Enhanced STAT3/PIK3R1/mTOR signaling triggers tubular cell inflammation and apoptosis in septic-induced acute kidney injury: implications for therapeutic intervention. ClinSci. 2024;138:351–369. doi: 10.1042/cs20240059. PubMed DOI

Ma SK, Choi JS, Joo SY, Kim HY, Kim CS, Bae EH, Lee JU, Kim SW. Activation of the Renal PI3K/Akt/mTOR Signaling Pathway in a DOCA-Salt Model of Hypertension. Chonnam Med J. 2012;48:150–154. doi: 10.4068/cmj.2012.48.3.150. PubMed DOI PMC

Eid S, Boutary S, Braych K, Sabra R, Massaad C, Hamdy A, Rashid A, Moodad S, Block K, Gorin Y, Abboud HE, Eid AA. mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes. Antioxid Redox Signal. 2016;25:703–719. doi: 10.1089/ars.2015.6562. PubMed DOI PMC

Eid AA, Ford BM, Bhandary B, de Cassia Cavaglieri R, Block K, Barnes JL, Gorin Y, Choudhury GG, Abboud HE. Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes. 2013;62:2935–2947. doi: 10.2337/db12-1504. PubMed DOI PMC

Zhu Y, Pires KM, Whitehead KJ, Olsen CD, Wayment B, Zhang YC, Bugger H, Ilkun O, Litwin SE, Thomas G, Kozma SC, Abel ED. Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth. plosone. 2013;8:e54221. doi: 10.1371/journal.pone.0054221. PubMed DOI PMC

Zhang D, Contu R, Latronico MV, Zhang J, Rizzi R, Catalucci D, Miyamoto S, Huang K, Ceci M, Gu Y, Dalton ND, Peterson KL, Guan KL, Brown JH, Chen J, Sonenberg N, Condorelli G. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Investig. 2010;120:2805–2816. doi: 10.1172/jci43008. PubMed DOI PMC

Sciarretta S, Forte M, Frati G, Sadoshima J. New Insights Into the Role of mTOR Signaling in the Cardiovascular System. Circulation research. 2018;122:489–505. doi: 10.1161/circresaha.117.311147. PubMed DOI PMC

Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation. 2003;107:1664–1670. doi: 10.1161/01.Cir.0000057979.36322.88. PubMed DOI

Gao G, Chen W, Yan M, Liu J, Luo H, Wang C, Yang P. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. IntJMolMed. 2020;45:195–209. doi: 10.3892/ijmm.2019.4407. PubMed DOI PMC

Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ, Zykovich A, Mooney SD, Strong R, Rosen CJ, Kapahi P, Nelson MD, Kennedy BK, Melov S. Late-life rapamycin treatment reverses age-related heart dysfunction. Aging cell. 2013;12:851–862. doi: 10.1111/acel.12109. PubMed DOI PMC

Shi B, Ma M, Zheng Y, Pan Y, Lin X. mTOR and Beclin1: Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. JCellPhysiol. 2019;234:12562–12568. doi: 10.1002/jcp.28125. PubMed DOI

Mu Y, Hu S, Liu X, Tang X, Lin J, Shi H. Mechanical forces pattern endocardial Notch activation via mTORC2-PKC pathway. eLife. 2025;13:RP97268. doi: 10.7554/eLife.97268. PubMed DOI PMC

Sciarretta S, Zhai P, Maejima Y, Del Re DP, Nagarajan N, Yee D, Liu T, Magnuson MA, Volpe M, Frati G, Li H, Sadoshima J. mTORC2 regulates cardiac response to stress by inhibiting MST1. Cell Rep. 2015;11:125–136. doi: 10.1016/j.celrep.2015.03.010. PubMed DOI PMC

Zhao QD, Viswanadhapalli S, Williams P, Shi Q, Tan C, Yi X, Bhandari B, Abboud HE. NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways. Circulation. 2015;131:643–655. doi: 10.1161/circulationaha.114.011079. PubMed DOI PMC

Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation. 2003;107:139–146. doi: 10.1161/01.cir.0000048892.83521.58. PubMed DOI

Lesniewski LA, Seals DR, Walker AE, Henson GD, Blimline MW, Trott DW, Bosshardt GC, LaRocca TJ, Lawson BR, Zigler MC, Donato AJ. Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. Aging cell. 2017;16:17–26. doi: 10.1111/acel.12524. PubMed DOI PMC

Islam MT, Hall SA, Dutson T, Bloom SI, Bramwell RC, Kim J, Tucker JR, Machin DR, Donato AJ, Lesniewski LA. Endothelial cell-specific reduction in mTOR ameliorates age-related arterial and metabolic dysfunction. Aging cell. 2024;23:e14040. doi: 10.1111/acel.14040. PubMed DOI PMC

Jiao Y, Li G, Li Q, Ali R, Qin L, Li W, Qyang Y, Greif DM, Geirsson A, Humphrey JD, Tellides G. mTOR (Mechanistic Target of Rapamycin) inhibition decreases mechanosignaling, collagen accumulation, and stiffening of the thoracic aorta in elastin-deficient mice. Arterioscler Thromb Vasc Biol. 2017;37:1657–1666. doi: 10.1161/atvbaha.117.309653. PubMed DOI PMC

Gürgen D, Kusch A, Klewitz R, Hoff U, Catar R, Hegner B, Kintscher U, Luft FC, Dragun D. Sex-specific mTOR signaling determines sexual dimorphism in myocardial adaptation in normotensive DOCA-salt model. Hypertens. 2013;61:730–736. doi: 10.1161/hypertensionaha.111.00276. PubMed DOI

Pei H, Wang W, Zhao D, Su H, Su G, Zhao Z. G Protein-coupled estrogen receptor 1 inhibits angiotensin ii-induced cardiomyocyte hypertrophy via the regulation of PI3K-Akt-mTOR signalling and autophagy. IntJ Biol Sci. 2019;15:81–92. doi: 10.7150/ijbs.28304. PubMed DOI PMC

Chen J, Yu J, Yuan R, Li N, Li C, Zhang X. mTOR inhibitor improves testosterone-induced myocardial hypertrophy in hypertensive rats. J Endocrinol. 2022;252:179–193. doi: 10.1530/joe-21-0284. PubMed DOI PMC

Baar EL, Carbajal KA, Ong IM, Lamming DW. Sex- and tissue-specific changes in mTOR signaling with age in C57BL/6J mice. Aging cell. 2016;15:155–166. doi: 10.1111/acel.12425. PubMed DOI PMC

Laouari D, Vergnaud P, Hirose T, Zaidan M, Rabant M, Nguyen C, Burtin M, Legendre C, Codogno P, Friedlander G, Anglicheau D, Terzi F. The sexual dimorphism of kidney growth in mice and humans. Kidney Int. 2022;102:78–95. doi: 10.1016/j.kint.2022.02.027. PubMed DOI

Minoretti P, García Martín Á, Gómez Serrano M, Santiago Sáez A, Liaño Riera M, Emanuele E. Evaluating the Serum Levels of Beclin-1 and Mammalian/Mechanistic Target of Rapamycin (mTOR) in Three Different Professional Categories. Cureus. 2023;15:e45335. doi: 10.7759/cureus.45335. PubMed DOI PMC

Yan X, Huang S, Li H, Feng Z, Kong J, Liu J. The causal effect of mTORC1-dependent circulating protein levels on nonalcoholic fatty liver disease: A Mendelian randomization study. Dig Liver Dis. 2024;56:559–564. doi: 10.1016/j.dld.2023.09.017. PubMed DOI

Mao Z, Tan Y, Tao J, Li L, Wang H, Yu F, Perl A, Zhao M. Renal mTORC1 activation is associated with disease activity and prognosis in lupus nephritis. Rheumatology. 2022;61:3830–3840. doi: 10.1093/rheumatology/keac037. PubMed DOI PMC

Shi Y, Hsu JH, Hu L, Gera J, Lichtenstein A. Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6. The J Biol Chem. 2002;277:15712–15720. doi: 10.1074/jbc.M200043200. PubMed DOI

Gaikwad SM, Ray P. Non-invasive imaging of PI3K/Akt/mTOR signalling in cancer. Am J Nucl Med Mol Imaging. 2012;2:418–431. PubMed PMC

Shende P, Plaisance I, Morandi C, Pellieux C, Berthonneche C, Zorzato F, Krishnan J, Lerch R, Hall MN, Rüegg MA, Pedrazzini T, Brink M. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation. 2011;123:1073–1082. doi: 10.1161/circulationaha.110.977066. PubMed DOI

Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309:481–484. doi: 10.1126/science.1112125. PubMed DOI

Orogo AM, Gonzalez ER, Kubli DA, Baptista IL, Ong SB, Prolla TA, Sussman MA, Murphy AN, Gustafsson Å B. Accumulation of mitochondrial DNA mutations disrupts cardiac progenitor cell function and reduces survival. J Biol Chem. 2015;290:22061–22075. doi: 10.1074/jbc.M115.649657. PubMed DOI PMC

Quan N, Li X, Zhang J, Han Y, Sun W, Ren D, Tong Q, Li J. Substrate metabolism regulated by Sestrin2–mTORC1 alleviates pressure overload-induced cardiac hypertrophy in aged heart. Redox Biol. 2020;36:101637. doi: 10.1016/j.redox.2020.101637. PubMed DOI PMC

Guimaraes DA, Dos Passos MA, Rizzi E, Pinheiro LC, Amaral JH, Gerlach RF, Castro MM, Tanus-Santos JE. Nitrite exerts antioxidant effects, inhibits the mTOR pathway and reverses hypertension-induced cardiac hypertrophy. Free Radic Biol Med. 2018;120:25–32. doi: 10.1016/j.freeradbiomed.2018.03.006. PubMed DOI

Aoyagi T, Kusakari Y, Xiao CY, Inouye BT, Takahashi M, Scherrer-Crosbie M, Rosenzweig A, Hara K, Matsui T. Cardiac mTOR protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2012;303:H75–85. doi: 10.1152/ajpheart.00241.2012. PubMed DOI PMC

Nistala R, Raja A, Pulakat L. mTORC1 inhibitors rapamycin and metformin affect cardiovascular markers differentially in ZDF rats. CanJPhysiolPharmacol. 2017;95:281–287. doi: 10.1139/cjpp-2016-0567. PubMed DOI PMC

Wang J, Huang Y, Wang Z, Liu J, Liu Z, Yang J, He Z. The mTOR Signaling pathway: key regulator and therapeutic target for heart disease. Biomedicines. 2025;13(2):397. doi: 10.3390/biomedicines13020397. PubMed DOI PMC

Turdi S, Kandadi MR, Zhao J, Huff AF, Du M, Ren J. Deficiency in AMP-activated protein kinase exaggerates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol. 2011;50:712–722. doi: 10.1016/j.yjmcc.2010.12.007. PubMed DOI PMC

Uchinaka A, Yoneda M, Yamada Y, Murohara T, Nagata K. Effects of mTOR inhibition on cardiac and adipose tissue pathology and glucose metabolism in rats with metabolic syndrome. Pharmacol res perspect. 2017;(4):e00331. doi: 10.1002/prp2.331. PubMed DOI PMC

Oriquat G, Masoud IM, Kamel MA, Aboudeya HM, Bakir MB, Shaker SA. The anti-obesity and anti-steatotic effects of chrysin in a rat model of obesity mediated through modulating the hepatic AMPK/mTOR/lipogenesis pathways. Molecules. 2023;28:1734. https://www.mdpi.com/1420-3049/28/4/1734 . PubMed PMC

Ai D, Baez JM, Jiang H, Conlon DM, Hernandez-Ono A, Frank-Kamenetsky M, Milstein S, Fitzgerald K, Murphy AJ, Woo CW, Strong A, Ginsberg HN, Tabas I, Rader DJ, Tall AR. Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice. J Clin Investig. 2012;122:1677–1687. doi: 10.1172/jci61248. PubMed DOI PMC

Das A, Durrant D, Koka S, Salloum FN, Xi L, Kukreja RC. Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression. J Biol Chem. 2014;289:4145–4160. doi: 10.1074/jbc.M113.521062. PubMed DOI PMC

Sun P, Wang Y, Ding Y, Luo J, Zhong J, Xu N, Zhang Y, Xie W. Canagliflozin attenuates lipotoxicity in cardiomyocytes and protects diabetic mouse hearts by inhibiting the mTOR/HIF-1α pathway. iScience. 2021;24(6):102521. doi: 10.1016/j.isci.2021.102521. PubMed DOI PMC

Ehninger D, Neff F, Xie K. Longevity, aging and rapamycin. Cell Mol Life Sci. 2014;71:4325–4346. doi: 10.1007/s00018-014-1677-1. PubMed DOI PMC

Zheleznova NN, Kumar V, Kurth T, Cowley AW., Jr Hydrogen peroxide (H(2)O(2)) mediated activation of mTORC2 increases intracellular Na(+) concentration in the renal medullary thick ascending limb of Henle. SciRep. 2021;11:7300. doi: 10.1038/s41598-021-86678-1. PubMed DOI PMC

Kumar V, Evans LC, Kurth T, Yang C, Wollner C, Nasci V, Zheleznova NN, Bukowy J, Dayton A, Cowley AW., Jr Therapeutic Suppression of mTOR (Mammalian Target of Rapamycin) signaling prevents and reverses salt-induced hypertension and kidney injury in dahl salt-sensitive rats. Hypertension (Dallas, Tex : 1979) 2019;73:630–639. doi: 10.1161/hypertensionaha.118.12378. PubMed DOI PMC

Kumar V, Kurth T, Zheleznova NN, Yang C, Cowley AW., Jr NOX4/H(2)O(2)/mTORC1 Pathway in Salt-Induced Hypertension and Kidney Injury. Hypertens. 2020;76:133–143. doi: 10.1161/hypertensionaha.120.15058. PubMed DOI PMC

Kumar V, Wollner C, Kurth T, Bukowy JD, Cowley AW., Jr Inhibition of mammalian target of rapamycin complex 1 attenuates salt-induced hypertension and kidney injury in dahl salt-sensitive rats. Hypertens. 2017;70:813–821. doi: 10.1161/hypertensionaha.117.09456. PubMed DOI PMC

Yang C, Isaeva E, Shimada S, Kurth T, Stumpf M, Zheleznova NN, Staruschenko A, Dash RK, Cowley AW., Jr Inhibition of mTORC2 promotes natriuresis in Dahl salt-sensitive rats via the decrease of NCC and ENaC activity. Am J Physiol Renal Physiol. 2024;327:F435–f449. doi: 10.1152/ajprenal.00403.2023. PubMed DOI PMC

Wang Y, Liu X, Zhang C, Wang Z. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats. J Nutr Biochem. 2018;56:133–141. doi: 10.1016/j.jnutbio.2018.01.007. PubMed DOI

Ou-Yang YN, Deng FF, Wang YJ, Chen M, Yang PF, Yang Z, Tian Z. High-salt diet induces dyslipidemia through the SREBP2/PCSK9 pathway in dahl salt-sensitive rats. Biochimie. 2024;216:34–45. doi: 10.1016/j.biochi.2023.10.001. PubMed DOI

Ogihara T, Asano T, Ando K, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Abe M, Fukushima Y, Kikuchi M, Fujita T. High-salt diet enhances insulin signaling and induces insulin resistance in Dahl salt-sensitive rats. Hypertens. 2002;40:83–89. doi: 10.1161/01.hyp.0000022880.45113.c9. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...