Accelerated discovery of crystalline materials with record ultralow lattice thermal conductivity via a universal descriptor
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
41407713
PubMed Central
PMC12820391
DOI
10.1038/s41467-025-67333-z
PII: 10.1038/s41467-025-67333-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Ultralow glass-like lattice thermal conductivity in crystalline materials is crucial for enhancing energy conversion efficiency in thermoelectrics and thermal insulators. We introduce a universal descriptor for thermal conductivity that relies only on the atomic number in the primitive cell and the sound velocity, enabling fast and scalable materials screening. Coupled with high-throughput workflows and universal machine learning potentials, we identify the candidate materials with ultralow thermal conductivity from over 25, 000 materials. We further validate this approach by experimentally confirming record-low thermal conductivity values of 0.15-0.16 W/m·K from 170 to 400 K in the halide metal CsAg2I3. Combining inelastic neutron scattering with first-principles calculations, we attribute the ultralow thermal conductivity to the intrinsically small sound velocity, strong anharmonicity, and structural complexity. Our work illustrates how a universal descriptor, combined with high-throughput screening, machine-learning potential and experiment, enables the efficient discovery of materials with ultralow thermal conductivity.
CRISMAT CNRS Normandie Univ ENSICAEN UNICAEN Caen France
FZU Institute of Physics of the Czech Academy of Sciences Cukrovarnická 10 112 Prague Czech Republic
Institute Laue Langevin 71 avenue des Martyrs CS 20156 Grenoble Cedex 9 France
Thayer School of Engineering Dartmouth College Hanover NH USA
Zobrazit více v PubMed
Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. PubMed DOI
Padture, N. P., Gell, M. & Jordan, E. H. Thermal barrier coatings for gas-turbine engine applications. PubMed DOI
Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. PubMed DOI
Shi, Y., Assoud, A., Ponou, S., Lidin, S. & Kleinke, H. A new material with a composite crystal structure causing ultralow thermal conductivity and outstanding thermoelectric properties: Tl PubMed DOI
Peng, W., Petretto, G., Rignanese, G.-M., Hautier, G. & Zevalkink, A. An unlikely route to low lattice thermal conductivity: small atoms in a simple layered structure. DOI
Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. PubMed DOI
Li, C. W. et al. Orbitally driven giant phonon anharmonicity in SnSe. DOI
Skelton, J. M. et al. Anharmonicity in the high-temperature Cmcm phase of SnSe: soft modes and three-phonon interactions. PubMed DOI
Pal, K., He, J. & Wolverton, C. Bonding hierarchy gives rise to high thermoelectric performance in layered Zintl compound BaAu2P4. DOI
Mukhopadhyay, S. et al. Two-channel model for ultralow thermal conductivity of crystalline Tl PubMed DOI
Acharyya, P. et al. Glassy thermal conductivity in Cs PubMed DOI PMC
Gibson, Q. D. et al. Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch. PubMed DOI
Shen, X. et al. Amorphous-like ultralow thermal transport in crystalline argyrodite Cu PubMed DOI PMC
Simoncelli, M., Marzari, N. & Mauri, F. Unified theory of thermal transport in crystals and glasses. DOI
Xia, Y., Ozoliņš, V. & Wolverton, C. Microscopic mechanisms of glasslike lattice thermal transport in cubic Cu PubMed DOI
Hanus, R. et al. Uncovering design principles for amorphous-like heat conduction using two-channel lattice dynamics. DOI
Xia, Z. et al. Realizing intrinsically ultralow and glass-like thermal transport via chemical bonding engineering. PubMed DOI PMC
Li, F. et al. Long-range anion correlations mediating dynamic anharmonicity and contributing to glassy thermal conductivity in well-ordered K PubMed DOI
Zheng, J. et al. Effects of high-order anharmonicity on anomalous lattice dynamics and thermal transport in fully filled skutterudite YbFe DOI
Yang, J., Jain, A. & Ong, W.-L. Inter-channel conversion between population-/coherence-channel dictates thermal transport in MAPbI3 crystals. DOI
Knoop, F., Purcell, T. A. R., Scheffler, M. & Carbogno, C. Anharmonicity in thermal insulators: an analysis from first principles. PubMed DOI
Zeng, Z. et al. Pushing thermal conductivity to its lower limit in crystals with simple structures. PubMed DOI PMC
Slack G. A. The Thermal Conductivity of Nonmetallic Crystals. In: Ehrenreich H., Seitz F., Turnbull D. (eds).
Callaway, J. Model for lattice thermal conductivity at low temperatures. DOI
Xia, Y. et al. A unified understanding of minimum lattice thermal conductivity. PubMed DOI PMC
Wang, X. et al. An interpretable formula for lattice thermal conductivity of crystals. DOI
Agne, M. T., Hanus, R. & Snyder, G. J. Minimum thermal conductivity in the context of diffuson-mediated thermal transport. DOI
Batatia, I. et al. A foundation model for atomistic materials chemistry. PubMed DOI
Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. PubMed DOI
Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. DOI
H. Yang. et al. MatterSim: a deep learning atomistic model across elements, temperatures and pressures.
Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. DOI
Li, W. et al. Low sound velocity contributing to the high thermoelectric performance of Ag PubMed DOI PMC
Simoncelli, M., Marzari, N. & Mauri, F. Wigner formulation of thermal transport in solids.
Peierls, R. Zur kinetischen Theorie der Wärmeleitung in Kristallen. DOI
Slack, G. A., Tanzilli, R. A., Pohl, R. O. & Vandersande, J. W. The intrinsic thermal conductivity of AIN. DOI
Ward, A., Broido, D. A., Stewart, D. A. & Deinzer, G. Ab initio theory of the lattice thermal conductivity in diamond. DOI
Steigmeier, E. F. & Kudman, I. Acoustical-optical phonon scattering in Ge, Si, and III-V compounds. DOI
Xiao, Y. et al. Origin of low thermal conductivity in SnSe. DOI
Zhang, J. et al. Direct observation of one-dimensional disordered diffusion channel in a chain-like thermoelectric with ultralow thermal conductivity. PubMed DOI PMC
Misra, S. et al. Reduced phase space of heat-carrying acoustic phonons in single-crystalline InTe. DOI
Zhu, J. et al. Vacancies tailoring lattice anharmonicity of Zintl-type thermoelectrics. PubMed DOI PMC
Acharyya, P. et al. Extended antibonding states and phonon localization induce ultralow thermal conductivity in low dimensional metal halide. DOI
Li, J. et al. First-principles studies of atomic dynamics in tetrahedrite thermoelectrics. DOI
Shen, X. et al. High-temperature structural and thermoelectric study of argyrodite Ag PubMed DOI
Li, F. et al. Overdamped phonon diffusion and nontrivial electronic structure leading to a high thermoelectric figure of merit in KCu PubMed DOI
Morelli, D. T., Jovovic, V. & Heremans, J. P. Intrinsically minimal thermal conductivity in Cubic I-V-VI PubMed DOI
Slack, G. A. Nonmetallic crystals with high thermal conductivity. DOI
Zheng, J. et al. Anharmonicity-induced phonon hardening and phonon transport enhancement in crystalline perovskite BaZrO DOI
Zheng, J. et al. Unravelling ultralow thermal conductivity in perovskite Cs DOI
Anderson, O. L. A simplified method for calculating the debye temperature from elastic constants. DOI
Lee, W. et al. Ultralow thermal conductivity in all-inorganic halide perovskites. PubMed DOI PMC
Cheng, R., Wang, C., Ouyang, N., Shen, X. & Chen, Y. Strong crystalline thermal insulation induced by extended antibonding states. PubMed DOI PMC
Hull, S. & Berastegui, P. Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides—II: ordered phases within the (AgX) DOI
Yao, M.-M. et al. Lead-Free Halide CsAg DOI
Jouini N., Guen L., Tournoux M. Structure Cristalline De Cscu2i3. (Springer, 1980).
Acharyya, P. et al. Intrinsically ultralow thermal conductivity in Ruddlesden–Popper 2D perovskite Cs PubMed DOI
Bhui, A. et al. Intrinsically low thermal conductivity in the n-Type vacancy-ordered double perovskite Cs DOI
Xie, H. et al. All-inorganic halide perovskites as potential thermoelectric materials: dynamic cation off-centering induces ultralow thermal conductivity. PubMed DOI
Shen, X. et al. Soft phonon mode triggering fast Ag diffusion in superionic argyrodite Ag PubMed DOI
Zheng J. et al. Wave-like tunneling of phonons dominates glass-like thermal transport in quasi-1D copper halide CsCu
Ioffe A., Regel A. Non-crystalline, amorphous, and liquid electronic semiconductors.
Elbaz, G. A. et al. Phonon speed, not scattering, differentiates thermal transport in lead halide perovskites. PubMed DOI
Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. DOI
Roisnel, T. & Rodríquez-Carvajal, J. WinPLOTR: a windows tool for powder diffraction pattern analysis. DOI
Gemmi, M. et al. 3D electron diffraction: the nanocrystallography revolution. PubMed DOI PMC
Smeets, S., Zou, X. & Wan, W. Serial electron crystallography for structure determination and phase analysis of nanocrystalline materials. PubMed DOI PMC
Palatinus, L. et al. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. PubMed DOI
Petříček V., Palatinus L., Plášil J., Dušek M. Jana2020 – a new version of the crystallographic computing system Jana.
Arnold, O. et al. Mantid—Data analysis and visualization package for neutron scattering and μ SR experiments. DOI
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. DOI
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. PubMed DOI
Blöchl, P. E. Projector augmented-wave method. PubMed DOI
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. PubMed DOI
Perdew, J. P., Burke, K. & Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. PubMed DOI
Hellman, O. & Abrikosov, I. A. Temperature-dependent effective third-order interatomic force constants from first principles. DOI
Kim, D. S. et al. Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon. PubMed DOI PMC
Shulumba, N., Hellman, O. & Minnich, A. J. Lattice thermal conductivity of polyethylene molecular crystals from first-principles including nuclear quantum effects. PubMed DOI
Errea, I., Calandra, M. & Mauri, F. Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: application to platinum and palladium hydrides. DOI
Tadano, T., Gohda, Y. & Tsuneyuki, S. Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations. PubMed DOI
Tadano, T. & Tsuneyuki, S. Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO DOI
Hellman, O., Abrikosov, I. A. & Simak, S. I. Lattice dynamics of anharmonic solids from first principles. DOI
Nelson, L. J., Hart, G. L. W., Zhou, F. & Ozoliņš, V. Compressive sensing as a paradigm for building physics models. DOI
Tadano, T. & Tsuneyuki, S. Quartic anharmonicity of rattlers and its effect on lattice thermal conductivity of clathrates from first principles. PubMed DOI
Feng, T. & Ruan, X. Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. DOI
Han, Z., Yang, X., Li, W., Feng, T. & Ruan, X. FourPhonon: an extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity. DOI
Tamura, S. -i Isotope scattering of dispersive phonons in Ge. DOI
Allen, P. B. & Feldman, J. L. Thermal conductivity of disordered harmonic solids. PubMed DOI
Li, W., Carrete, J., A. Katcho, N. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. DOI
Ganose, A. M. et al. Atomate2: modular workflows for materials science. PubMed DOI PMC
Shen X., Guilmeau E., Koza M. M., Weber F. Lattice dynamics and Ag diffusion in Ag
Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. DOI