Eastern Arc of Glacial Relict Species-Population Genetics of Violet Copper Lycaena helle Butterfly in East-Central Europe
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22330074
International Visegrad Fund
09078/SOPK/24
Czech Agency of Nature Conservation
PubMed
41465642
PubMed Central
PMC12733835
DOI
10.3390/insects16121202
PII: insects16121202
Knihovny.cz E-zdroje
- Klíčová slova
- Carpathians, North European Plain, butterfly conservation, glacial relic, interglacial habitats, introduced population,
- Publikační typ
- časopisecké články MeSH
We studied Lycaena helle (Lepidoptera: Lycaenidae) population genetics in lowlands and mountains of East-Central Europe using the microsatellite markers previously applied in population studies mainly in mountains of Western Europe. As in the West, the East-Central populations are genetically diverse (mean expected/observed heterozygosity 0.67/0.49), affected by drift processes (mean inbreeding coefficient 0.277) and widely differentiated (mean FST 0.209). The Polish lowland populations, all of them bivoltine in contrast to mountain populations, are less differentiated than Romanian populations, which are bivoltine in low and univoltine in high altitudes. The lowland Romanian population Vad is extremely genetically impoverished. A transferred CZ population from Western Europe is impoverished relative to its donor population, but the genetic parameters remain within a range of other studied so far. Dendrogram of allelic frequencies suggests that the populations form two branches, one rooted in southeastern Poland and branching towards Carpathians in Romania, one encompassing populations in central and northern Poland. We conclude that the lowland Romanian populations, plus populations in unglaciated southeastern Poland, represent sites where the species survived the glacial cycles in situ, comprising rear edge of subsequent upslope expansion, while northern Poland was colonised from more easterly regions.
Emil Racovita Institute of Speleology Clinicilor 5 400006 Cluj Napoca Romania
Faculty of Biological Science University of Wrocław Przybyszewskiego 65 51 148 Wrocław Poland
Faculty of Sciences University South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
Institute of Entomology Biology Centre CAS Branišovská 31 370 05 České Budějovice Czech Republic
Zoological Museum Babes Bolyai University 5 7 Clinicilor 400006 Cluj Napoca Romania
Zobrazit více v PubMed
Hewitt G.M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B. 2004;359:183–195. doi: 10.1098/rstb.2003.1388. PubMed DOI PMC
Schmitt T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 2007;4:11. doi: 10.1186/1742-9994-4-11. PubMed DOI PMC
Maresova J., Suchackova Bartonova A., Konvicka M., Høye T.T., Gilg O., Kresse J.C., Shapoval N.A., Yakovlev R.V., Faltynek Fric Z. The story of endurance: Biogeography and the evolutionary history of four Holarctic butterflies with different habitat requirements. J. Biogeogr. 2021;48:590–602. doi: 10.1111/jbi.14022. DOI
Markova A.K., Van Kolfschoten T., Bohncke S., Kosintsev P.A., Mol J., Puzachenko A.Y., Simakova A.N., Smirnov N.G., Verpoorte A., Golovachev I.B. Evolution of European Ecosystems During Pleistocene–Holocene Transition (24–8 Kyr BP) GEOS; Moscow, Russia: 2008.
Maresova J., Habel J.C., Neve G., Sielezniew M., Bartonova A., Kostro-Ambroziak A., Fric Z.F. Cross-continental phylogeography of two Holarctic Nymphalid butterflies, Boloria eunomia and Boloria selene. PLoS ONE. 2019;14:e0214483. doi: 10.1371/journal.pone.0214483. PubMed DOI PMC
Bartonova A., Konvicka M., Korb S., Kramp K., Schmitt T., Faltynek Fric Z. Range dynamics of Palaearctic steppe species under glacial cycles: The phylogeography of Proterebia afra (Lepidoptera: Nymphalidae: Satyrinae) Biol. J. Linn. Soc. Lond. 2018;125:867–884. doi: 10.1093/biolinnean/bly136. DOI
Zinovyev E. Sub-fossil beetle assemblages associated with the “mammoth fauna” in the Late Pleistocene localities of the Ural Mountains and West Siberia. ZooKeys. 2011;100:149–169. doi: 10.3897/zookeys.100.1524. PubMed DOI PMC
Ruzicka M. The Pleistocene glaciation of Czechia. In: Ehlers J., Gibbard P.L., editors. Quaternary Glaciations—Extent and Chronology. Part I: Europe. Developments in Quaternary Science. Volume 1. Elsevier B.V.; Amsterdam, The Netherlands: 2004. pp. 27–34.
Kuhlemann J., Dobre F., Urdea P., Krumrei I., Gachev E., Kubik P., Rahn M. Last glacial maximum glaciation of the central south Carpathian range (Romania) Austrian J. Earth Sci. 2013;106:50–62.
Jurickova L., Horackova J., Lozek V. Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils. Quat. Res. 2014;82:222–228. doi: 10.1016/j.yqres.2014.01.015. DOI
Hosek J., Pokorny P., Storch D., Kvacek J., Havig J., Novak J., Hajkova P., Jamrichova E., Brengman L., Radomersky T., et al. Hot spring oases in the periglacial desert as the Last Glacial Maximum refugia for temperate trees in Central Europe. Sci. Adv. 2024;10:eado6611. doi: 10.1126/sciadv.ado6611. PubMed DOI PMC
Puzachenko A.Y., Markova A.K. Evolution of mammal species composition and species richness during the Late Pleistocene-Holocene transition in Europe: A general view at the regional scale. Quat. Int. 2019;530:88–106. doi: 10.1016/j.quaint.2018.12.025. DOI
Suchackova Bartonova A., Konvicka M., Maresova J., Blahova D., Cip D., Skala P., Andres M., Hula V., Dolek M., Geyer A., et al. Extremely endangered butterflies of scattered central European dry grasslands under current habitat alteration. Insect Syst. Divers. 2021;5:6. doi: 10.1093/isd/ixab017. DOI
Willner W., Moser D., Plenk K., Aćić S., Demina O.N., Höhn M., Kuzemko A., Roleček J., Vassilev K., Vynokurov D., et al. Long-term continuity of steppe grasslands in eastern Central Europe: Evidence from species distribution patterns and chloroplast haplotypes. J. Biogeogr. 2021;48:3104–3117. doi: 10.1111/jbi.14269. DOI
Spitzer K., Bezděk A., Jaroš J. Ecological succession of a relict Central European peat bog and variability of its insect biodiversity. J. Insect Conserv. 1999;3:97–106. doi: 10.1023/A:1009634611130. DOI
Kramp K., Cizek O., Madeira P.M., Ramos A.A., Konvicka M., Castilho R., Schmitt T. Genetic implications of phylogeographical patterns in the conservation of the boreal wetland butterfly Colias palaeno (Pieridae) Biol. J. Linn. Soc. 2016;119:1068–1081. doi: 10.1111/bij.12840. DOI
Sommer R.S., Thiele V., Sushko G., Sielezniew M., Kolligs D., Dapkus D. The distribution pattern of mire specialist butterflies in raised bogs of the northern lowlands of Central Europe. Nota Lepidopterol. 2022;45:41–52. doi: 10.3897/nl.45.75182. DOI
Feurdean A., Ruprecht E., Molnár Z., Hutchinson S.M., Hickler T. Biodiversity-rich European grasslands: Ancient, forgotten ecosystems. Biol. Conserv. 2018;228:224–232. doi: 10.1016/j.biocon.2018.09.022. DOI
Craioveanu C., Sitar C., Rákosy L. Mobility, behaviour and phenology of the Violet Copper Lycaena helle in North-Western Romania. In: Habel J.C., Meyer M., Schmitt T., editors. Jewels in the Mist: A Synopsis on the Endangered Violet Copper Butterfly Lycaena helle. Pensoft; Sofia, Bulgaria: 2014. pp. 91–105.
Ion C.M., Manu M., Stanescu M., Maican S., Helepciuc F.E., Morosanu A.M., Stefanut M.M., Tamas G., Birsan C.C., Nicoara R.G., et al. The rediscovery of Lycaena helle (Lepidoptera: Lycaenidae) in Dorna depression (Romania), 125 years after its first mention. Sci. Pap. Ser. D Anim. Sci. 2023;66:612–620.
Popovic M., Duric M., Franeta F., van Deijk J.R., Vermeer R. First records of Lycaena helle ([Denis & Schiffermüller], 1775) for the Balkan Peninsula (Lepidoptera: Lycaenidae) Shilap Rev. Lepidopt. 2014;42:287–294. doi: 10.57065/shilap.185. DOI
Langourov M., Raeburn H. A new locality of the violet copper Lycaena helle ([Denis et Schiffermüller], 1775) on the Balkan Peninsula. Hist. Nat. Bulg. 2022;44:41–44. doi: 10.48027/hnb.44.061. DOI
Beneš J., Konvička M., Dvořák J., Fric Z., Havelda Z., Pavlíčko A., Vrabec V., Weidenhoffer Z. Motýli České republiky: Rozšíření a ochrana I, II [Butterflies of the Czech Republic: Distribution and Conservation] SOM; Praha, Czech Republic: 2002.
Reinhardt R., Harpke A., Caspari S., Dolek M., Kühn E., Musche M., Trusch R., Wiemers M., Settele J. Verbreitungsatlas der Tagfalter und Widderchen Deutschlands. Verlag Eugen Ulmer; Stuttgart, Germany: 2020.
Goffart P., Schtickzelle N., Turlure C. Conservation and management of the habitats of two relict butterflies in the Belgian Ardenne: Proclossiana eunomia and Lycaena helle. In: Habel J.C., Schmitt T., editors. Relict Species: Phylogeography and Conservation Biology. Springer; Berlin/Heidelberg, Germany: 2014. pp. 357–370.
Goffart P., Cavelier E., Lighezzolo P., Rauw A., Lafontaine D. Restoration and management of habitat networks for Lycaena helle in Belgium. In: Habel J.C., Meyer M., Schmitt T., editors. Jewels in the Mist: A Synopsis on the Endangered Violet Copper Butterfly Lycaena helle. Pensoft; Sofia, Bulgaria: 2014. pp. 197–216.
Scherer G., Löffler F., Fartmann T. Abandonment of traditional land use and climate change threaten the survival of an endangered relict butterfly species. Insect Conserv. Divers. 2021;14:556–567. doi: 10.1111/icad.12485. DOI
Habel J.C., Roedder D., Schmitt T., Nève G. Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob. Change Biol. 2011;17:194–205. doi: 10.1111/j.1365-2486.2010.02233.x. DOI
Kebaili C., Sherpa S., Guéguen M., Renaud J., Rioux D., Després R. Comparative genetic and demographic responses to climate change in three peatland butterflies in the Jura massif. Biol. Conserv. 2023;287:110332. doi: 10.1016/j.biocon.2023.110332. DOI
Fischer K., Beinlich B., Plachter H. Population structure, mobility and habitat preferences of the violet copper Lycaena helle (Lepidoptera: Lycaenidae) in Western Germany: Implications for conservation. J. Insect Conserv. 1999;3:43–52. doi: 10.1023/A:1009630506216. DOI
Kašpar A. Chrysophanus amphidamas Esp., nový motýl pro Moravu [Chrysophanus amphidamas Esp., new butterfly for Moravia] Časopis Vlasteneckého Spolku Muzejního Olomouc. 1939;52:175–178.
Plazio E., Nowicki P. Inter-sexual and inter-generation differences in dispersal of a bivoltine butterfly. Sci. Rep. 2021;11:10950. doi: 10.1038/s41598-021-90572-1. PubMed DOI PMC
Habel J.C., Schmitt T., Meyer M., Finger A., Roedder D., Assmann T., Zachos F.E. Biogeography meets conservation: The genetic structure of the endangered lycaenid butterfly Lycaena helle (Denis & Schiffermüller, 1775) Biol. J. Linn. Soc. Lond. 2010;101:155–168. doi: 10.1111/j.1095-8312.2010.01471.x. DOI
Habel J.C., Meyer M., Schmitt T. Jewels in the Mist, A Synopsis on the Endangered Violet Copper Butterfly Lycaena helle. Pensoft; Sofia, Bulgaria: 2014.
Modin H., Öckinger E. Mobility, habitat selection and population connectivity of the butterfly Lycaena helle in central Sweden. J. Insect Conserv. 2020;24:821–831. doi: 10.1007/s10841-020-00254-y. DOI
Bauerfeind S.S., Theisen A., Fischer K. Patch occupancy in the endangered butterfly Lycaena helle in a fragmented landscape: Effects of habitat quality, patch size and isolation. J. Insect Conserv. 2009;13:271–277. doi: 10.1007/s10841-008-9166-1. DOI
Turlure C., Van Dyck H., Goffart P., Schtickzelle N. Resource-based habitat use in Lycaena helle: Significance of a functional, ecological niche-oriented approach. In: Habel J.C., Meyer M., Schmitt T., editors. Jewels in the Mist, A Synopsis on the Endangered Violet Copper Butterfly Lycaena helle. Pensoft; Sofia, Bulgaria: 2014. pp. 67–85.
Nabielec J., Nowicki P. Drivers of local densities of endangered Lycaena helle butterflies in a fragmented landscape. Popul. Ecol. 2015;57:649–656. doi: 10.1007/s10144-015-0507-0. DOI
Peškařová T., Pavlíčko A., Kuras T., Fric Z.F., Konvička M. Population status of the highly endangered Lycaena helle (Papilionoidea, Lycaenidae) in the Šumava Mts. two decades after establishment. Nota Lepidopterol. 2024;47:171–186. doi: 10.3897/nl.47.126025. DOI
Finger A., Schmitt T., Zachos F.E., Meyer M., Assmann T., Habel J.C. The genetic status of the violet copper Lycaena helle—A relict of the cold past in times of global warming. Ecography. 2009;32:382–390. doi: 10.1111/j.1600-0587.2008.05766.x. DOI
Habel J.C., Finger A., Schmitt T., Nève G. Survival of the endangered butterfly Lycaena helle in a fragmented environment: Genetic analyses over 15 years. J. Zool. Sys Evol. Res. 2010;19:25–31. doi: 10.1111/j.1439-0469.2010.00575.x. DOI
Sucháčková Bartoňová A., Škopek P., Konvička M., Beneš J., Spitzer L., Sbaraglia C., Vrabec V., Papp Marešová J., Konvičková H., Faltýnek Fric Z. Czech Republic butterfly barcoding reveals that distribution of genetic lineages depends on species traits. J. Biogeogr. 2024;51:1575–1586. doi: 10.1111/jbi.14848. DOI
Kayser M. How to manage habitats of the endangered lycaenid butterfly Lycaena helle (Denis & Schiffermüller, 1775) (Insecta, Lepidoptera) Bull. Soc. Nat. Luxemb. 2014;115:241–249.
Descimon H., Bachelard P. Results of two introductions of Lycaena helle in France. In: Habel J.C., Meyer M., Schmitt T., editors. Jewels in the Mist: A Synopsis on the Endangered Violet Copper Butterfly Lycaena helle. Pensoft; Sofia, Bulgaria: 2014. pp. 185–196.
Habel J.C., Finger A., Meyer M., Schmitt T., Assmann T. Polymorphic microsatellite loci in the endangered butterfly Lycaena helle (Lepidoptera: Lycaenidae) Eur. J. Entomol. 2008;105:361–362. doi: 10.14411/eje.2008.043. DOI
Ryrholm N. The Violet Copper Lycaena helle at its northern distribution range. In: Habel J.C., Meyer M., Schmitt T., editors. Jewels in the Mist: A Synopsis on the Endangered Violet Copper Butterfly Lycaena helle. Pensoft; Sofia, Bulgaria: 2014. pp. 197–216.
Krahulec F., Blažková D., Balátová-Tuláčková E., Štursa J., Pecháčková S., Fabšicová M. Meadows in the Krkonoše Mts—Plant communities and their dynamics. Opera Corcontica. 1997;33:3–250.
Blaik T. Występowanie, stan populacji i siedliska czerwończyka fioletka Lycaena helle (Denis et Schiffermüller, 1775) (Lepidoptera: Lyceanidae) w województwie opolskim. Przyroda Sudetów. 2014;17:135–146.
Sielezniew M., Dziekańska I. Czerwończyk fioletek Lycaena helle. In: Makomaska-Juchiewicz M., Baran P., editors. Monitoring Gatunków Zwierząt. Przewodnik Metodyczny. Część II. GIOŚ; Warszawa, Poland: 2012. pp. 124–141.
Krzywicki M. Fauna Papilionoidea i Hesperioidea (Lepidoptera) Puszczy Białowieskiej. Ann. Zool. 1967;25:1–213.
Chapuis M.P., Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 2007;24:621–631. doi: 10.1093/molbev/msl191. PubMed DOI
Raymond M., Rousset F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Heredity. 1995;86:248–249. doi: 10.1093/oxfordjournals.jhered.a111573. DOI
Belkhir K., Borsa P., Chikhi L., Raufaste N., Bonhomme F. GENETIX 4.05, Logiciel sous Windows TM pour la Génétique des Populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II; Montpellier, France: 2004.
Goudet J. Fstat (Version 1.2): A Computer Program to Calculate F-Statistics. J. Hered. 1995;86:485–486. doi: 10.1093/oxfordjournals.jhered.a111627. DOI
Peakall R., Smouse P.E. GENALEX 6: Genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 2006;6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x. PubMed DOI PMC
Hammer Ø., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:1–9.
Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC
Li Y.L., Liu J.X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Res. 2018;18:176–177. doi: 10.1111/1755-0998.12719. PubMed DOI
Pritchard J.K., Wen W. Documentation for STRUCTURE Software, Version 2. 2003. [(accessed on 10 May 2025)]. Available online: https://web.stanford.edu/group/pritchardlab/structure.html.
Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Klimczuk P. Butterflies (Lepidoptera: Hesperioidea, Papilionoidea) of the Knyszyńska Forest (Puszczy Knyszyńskiej) and adjacent woodland areas of Białystok. Nat. J. 2011;44:197–217.
Sielezniew M. Raport z inwentaryzacji czerwończyka fioletka na terenie obszaru Natura 2000 “Ostoja Knyszyńska”. Regionalna Dyrekcja Ochrony Środowiska w Białymstoku; Białystok, Poland: 2018. Unpublished Report.
Bergman K.O. Habitat utilization by Lopinga achine (Nymphalidae: Satyrinae) larvae and ovipositing females: Implications for conservation. Biol. Conserv. 1999;88:69–74. doi: 10.1016/S0006-3207(98)00088-3. DOI
Dolek M., Kőrösi Á., Freese-Hager A. Successful maintenance of Lepidoptera by government-funded management of coppiced forests. J. Nat. Conserv. 2018;43:75–84. doi: 10.1016/j.jnc.2018.02.001. DOI
Sielezniew M., Nowicki P. Adult demography of an isolated population of the threatened butterfly Scarce Heath Coenonympha hero and its conservation implications. J. Insect Conserv. 2017;21:737–742. doi: 10.1007/s10841-017-0014-z. DOI
Vlasanek P., Hauck D., Konvicka M. Adult sex ratio in the Parnassius mnemosyne butterfly: Effects of survival, migration, and weather. Isr. J. Ecol. Evol. 2009;55:233–252. doi: 10.1560/IJEE.55.3.233. DOI
Pearce E.A., Mazier F., Davison C.W., Baines O., Czyżewski S., Fyfe R., Bińka K., Boreham S., de Beaulieu J.L., Gao C., et al. Beyond the closed-forest paradigm: Cross-scale vegetation structure in temperate Europe before the late-Quaternary megafauna extinctions. Earth Hist. Biodiv. 2025;3:100022. doi: 10.1016/j.hisbio.2025.100022. DOI
Svenning J.C. A review of natural vegetation openness in north-western Europe. Biol. Conserv. 2002;104:133–148. doi: 10.1016/S0006-3207(01)00162-8. DOI
Buckley P. Coppice restoration and conservation: A European perspective. J. For. Res. 2020;25:125–133. doi: 10.1080/13416979.2020.1763554. DOI
Székely L., Görbe R. The lepidoptera fauna of “Dumbrava Vaduluipoienile cu narcise” forest (Șercaia, Brașov county, Romania) Brukenthal Acta Musei. 2019;14:597–620.
Turlure C., Van Dyck H., Schtickzelle N., Baguette M. Resource-based habitat definition, niche overlap and conservation of two sympatric glacial relict butterflies. Oikos. 2009;118:950–960. doi: 10.1111/j.1600-0706.2009.17269.x. DOI
Corduneanu C., Corduneanu G., Rákosy L., Dincă V. First records of the bog fritillary Boloria eunomia (Esper, 1800) in the Romanian fauna (Lepidoptera, Nymphalidae): Peripheral populations in habitats of conservation concern. J. Insect Conserv. 2025;29:26. doi: 10.1007/s10841-025-00664-w. DOI
Fischer K., Schubert E., Limberg J. Caught in a trap: How to preserve a post-glacial relict species in secondary habitats? In: Habel J.C., Schmitt T., editors. Relict Species: Phylogeography and Conservation Biology. Springer; Berlin/Heidelberg, Germany: 2014. pp. 217–229.
Jangjoo M., Matter S.F., Roland J., Keyghobadi N. Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network. Proc. Natl. Acad. Sci. USA. 2016;113:10914–10919. doi: 10.1073/pnas.1600865113. PubMed DOI PMC
Vandewoestijne S., Schtickzelle N., Baguette M. Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biol. 2008;6:46. doi: 10.1186/1741-7007-6-46. PubMed DOI PMC
Vanden Broeck A., Maes D., Kelager A., Wynhoff I., WallisDeVries M.F., Nash D.R., Oostermeijer J.G.B., Van Dyck H., Mergeay J. Gene flow and effective population sizes of the butterfly Maculinea alcon in a highly fragmented, anthropogenic landscape. Biol. Conserv. 2017;209:89–97. doi: 10.1016/j.biocon.2017.02.001. DOI
Hanski I., Schulz T., Wong S.C., Ahola V., Ruokolainen A., Ojanen S.P. Ecological and genetic basis of metapopulation persistence of the Glanville fritillary butterfly in fragmented landscapes. Nat. Commun. 2017;8:14504. doi: 10.1038/ncomms14504. PubMed DOI PMC
Gabryszuk M., Barszczewski J., Wróbel B. Characteristics of grasslands and their use in Poland. J. Water Land. Develop. 2021;51:243–249. doi: 10.24425/jwld.2021.139035. DOI
Kulik M., Urban D., Grzywaczewski G., Bochniak A., Grzywna A., Sender J. Half a century of wetland degradation: The present state and trends of changes in Western Polesie-Long-term wetland degradation. Glob. Ecol. Conserv. 2024;56:e03324. doi: 10.1016/j.gecco.2024.e03324. DOI
Medyńska-Gulij B., Szoszkiewicz K., Cybulski P., Wielebski Ł. Permanent areas and changes in forests, grasslands, and wetlands in the North European Plain since the eighteenth century—A case study of the Kościan Plain in Poland. Sci. Rep. 2024;14:10305. doi: 10.1038/s41598-024-61086-3. PubMed DOI PMC
Schmitt T., Seitz A. Intraspecific allozymatic differentiation reveals the glacial refugia and the postglacial expansions of European Erebia medusa (Lepidoptera: Nymphalidae) Biol. J. Linn. Soc. 2001;74:429–458. doi: 10.1111/j.1095-8312.2001.tb01404.x. DOI
Schmitt T., Gießl A., Seitz A. Postglacial colonisation of western Central Europe by Polyommatus coridon (Poda 1761) (Lepidoptera: Lycaenidae): Evidence from population genetics. Heredity. 2002;88:26–34. doi: 10.1038/sj.hdy.6800003. PubMed DOI
Patricelli D., Sielezniew M., Ponikwicka-Tyszko D., Ratkiewicz M., Bonelli S., Barbero F., Witek M., Buś M.M., Rutkowski R., Balletto E. Contrasting genetic structure of rear edge and continuous range populations of a parasitic butterfly infected by Wolbachia. BMC Evol. Biol. 2013;13:14. doi: 10.1186/1471-2148-13-14. PubMed DOI PMC
Cassel A., Tammaru T. Allozyme variability in central, peripheral and isolated populations of the scarce heath (Coenonympha hero: Lepidoptera, Nymphalidae); implications for conservation. Conserv. Genet. 2003;4:83–93. doi: 10.1023/A:1021884832122. DOI
Altermatt F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B Biol. 2010;277:1281–1287. doi: 10.1098/rspb.2009.1910. PubMed DOI PMC
Wepprich T., Henry E., Haddad N.M. Voltinism shifts in response to climate warming generally benefit populations of multivoltine butterflies. Ecol. Lett. 2025;28:e70018. doi: 10.1111/ele.70018. PubMed DOI
Aguilar-Gómez D., Yuan L., Zhang Y., Ochoa A., Culver M., Fitak R.R., Onorato D., Lohmueller K.E., Nielsen R. Genetic rescue of Florida panthers reduced homozygosity but did not swamp ancestral genotypes. Proc. Natl. Acad. Sci. USA. 2025;122:e2410945122. doi: 10.1073/pnas.2410945122. PubMed DOI PMC
Srbek-Araujo A.C., Haag T., Chiarello A.G., Salzano F.M., Eizirik E. Worrisome isolation: Noninvasive genetic analyses shed light on the critical status of a remnant jaguar population. J. Mammal. 2018;99:397–407. doi: 10.1093/jmammal/gyy007. DOI
Vera F.W.M. Grazing Ecology and Forest History. CABI Publishing; Wallingford, UK: 2000.
Williams M. Dark ages and dark areas: Global deforestation in the deep past. J. Hist. Geogr. 2000;26:28–46. doi: 10.1006/jhge.1999.0189. DOI
Youri M., Habel J.C., Van Dyck H., Titeux N. Losing genetic uniqueness under global change: The Violet Copper (Lycaena helle) in Europe. In: Habel J.C., Meyer M., Schmitt T., editors. Jewels in the Mist: A Synopsis on the Endangered Violet Copper Butterfly Lycaena helle. Pensoft; Sofia, Bulgaria: 2014. pp. 165–184.