Potential of phage therapy for the treatment of diabetic foot infections

. 2026 Jan 06 ; () : . [epub] 20260106

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41493710
Odkazy

PubMed 41493710
DOI 10.1007/s12223-025-01394-x
PII: 10.1007/s12223-025-01394-x
Knihovny.cz E-zdroje

Zobrazit více v PubMed

Abedon ST, Danis-Wlodarczyk KM, Wozniak DJ (2021) Phage cocktail development for bacteriophage therapy: toward improving spectrum of activity breadth and depth. Pharmaceuticals 14:1019. https://doi.org/10.3390/ph14101019 PubMed DOI PMC

Abuhay HW, Yenit MK, Wolde HF (2022) Incidence and predictor of diabetic foot ulcer and its association with change in fasting blood sugar among diabetes mellitus patients at referral hospitals in Northwest Ethiopia, 2021. PLoS One 17:e0274754. https://doi.org/10.1371/journal.pone.0274754 PubMed DOI PMC

Afonso AC, Oliveira D, Saavedra MJ et al (2021) Biofilms in diabetic foot ulcers: impact, risk factors and control strategies. Int J Mol Sci 22:8278. https://doi.org/10.3390/ijms22158278 PubMed DOI PMC

Ahmad-Mansour N, Plumet L, Pouget C et al (2023) The ROSA-like prophage colonizing Staphylococcus aureus promotes intracellular survival, biofilm formation, and virulence in a chronic wound environment. J Infect Dis 228:1800–1804. https://doi.org/10.1093/infdis/jiad218 PubMed DOI

Aicale R, Cipollaro L, Esposito S, Maffulli N (2020) An evidence based narrative review on treatment of diabetic foot osteomyelitis. Surgeon 18:311–320. https://doi.org/10.1016/j.surge.2020.01.007 PubMed DOI

Akash MSH, Rehman K, Fiayyaz F et al (2020) Diabetes-associated infections: development of antimicrobial resistance and possible treatment strategies. Arch Microbiol 202:953–965. https://doi.org/10.1007/s00203-020-01818-x PubMed DOI PMC

Albac S, Medina M, Labrousse D et al (2020) Efficacy of bacteriophages in a Staphylococcus aureus nondiabetic or diabetic foot infection murine model. Antimicrob Agents Chemother 64:10–1128. https://doi.org/10.1128/aac.01870-19 DOI

Alves DR, Perez-Esteban P, Kot W et al (2016) A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol 9:61–74. https://doi.org/10.1111/1751-7915.12316 PubMed DOI

Aquili V, Ebner G, Balagué C (2012) Effect of preservatives on Shiga toxigenic phages and Shiga toxin of Escherichia coli O157:H7. J Food Prot 75:959–965. https://doi.org/10.4315/0362-028x.jfp-11-332 PubMed DOI

Armstrong DG, Boulton AJM, Bus SA et al (2017) Diabetic foot ulcers and their recurrence. N Engl J Med 376:2367–2375. https://doi.org/10.1056/NEJMra1615439 PubMed DOI

Barnes JA, Eid MA, Creager MA, Goodney PP (2020) Epidemiology and risk of amputation in patients with diabetes mellitus and peripheral artery disease. Arterioscler Thromb Vasc Biol 40:1808–1817. https://doi.org/10.1161/ATVBAHA.120.314595 PubMed DOI PMC

Blanco-Picazo P, Fernández-Orth D, Brown-Jaque M et al (2020) Unravelling the consequences of the bacteriophages in human samples. Sci Rep 10:6737. https://doi.org/10.1038/s41598-020-63432-7 PubMed DOI PMC

Bosco K, Lynch S, Sandaradura I, Khatami A (2023) Therapeutic phage monitoring: a review. Clin Infect Dis 77:S384–S394. https://doi.org/10.1093/cid/ciad497 PubMed DOI

Boulton AJM, Armstrong DG, Hardman MJ et al (2020) Diagnosis and management of diabetic foot infections. ADA Clinical Compendia 2020:1. https://doi.org/10.2337/db2020-01 DOI

Bray ER, Oropallo AR, Grande DA et al (2021) Extracellular vesicles as therapeutic tools for the treatment of chronic wounds. Pharmaceutics 13:1543. https://doi.org/10.3390/pharmaceutics13101543 PubMed DOI PMC

Brocklehurst JD (2023) The validity and reliability of the SINBAD classification system for diabetic foot ulcers. Adv Skin Wound Care 36:1–5. https://doi.org/10.1097/ASW.0000000000000050 PubMed DOI

Chang RYK, Morales S, Okamoto Y, Chan H-K (2020) Topical application of bacteriophages for treatment of wound infections. Transl Res 220:153–166. https://doi.org/10.1016/j.trsl.2020.03.010 PubMed DOI

Chávez-Reyes J, Escárcega-González CE, Chavira-Suárez E et al (2021) Susceptibility for some infectious diseases in patients with diabetes: the key role of glycemia. Front Public Health 9:559595. https://doi.org/10.3389/fpubh.2021.559595 PubMed DOI PMC

Chhibber S, Kaur J, Kaur S (2018) Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front Microbiol 9:561. https://doi.org/10.3389/fmicb.2018.00561 PubMed DOI PMC

Cho NH, Shaw JE, Karuranga S et al (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023 PubMed DOI

Chuan F, Tang K, Jiang P et al (2015) Reliability and validity of the perfusion, extent, depth, infection and sensation (PEDIS) classification system and score in patients with diabetic foot ulcer. PLoS One 10:e0124739. https://doi.org/10.1371/journal.pone.0124739 PubMed DOI PMC

Del Core MA, Ahn J, Lewis IIIRB et al (2018) The evaluation and treatment of diabetic foot ulcers and diabetic foot infections. Foot Ankle Orthop 3:2473011418788864. https://doi.org/10.1177/2473011418788864 DOI

Deng H, Li B, Shen Q et al (2023) Mechanisms of diabetic foot ulceration: a review. J Diabetes 15:299–312. https://doi.org/10.1111/1753-0407.13372 PubMed DOI PMC

Diban F, Di Lodovico S, Di Fermo P et al (2023) Biofilms in chronic wound infections: innovative antimicrobial approaches using the in vitro Lubbock chronic wound biofilm model. Int J Mol Sci 24:1004. https://doi.org/10.3390/ijms24021004 PubMed DOI PMC

Du F, Ma J, Gong H et al (2022) Microbial infection and antibiotic susceptibility of diabetic foot ulcer in China: literature review. Front Endocrinol 13:881659. https://doi.org/10.3389/fendo.2022.881659 DOI

Duplessis CA, Biswas B (2020) A review of topical phage therapy for chronically infected wounds and preparations for a randomized adaptive clinical trial evaluating topical phage therapy in chronically infected diabetic foot ulcers. Antibiotics 9:377. https://doi.org/10.3390/antibiotics9070377 PubMed DOI PMC

Easwaran M, Raja N, Saravanan M, Belete MA (2024) Liposome-loaded phage cocktail: a promising therapeutic option against post-surgical wound infections-a critical appraisal. Ann Med Surg 86:4319–4321. https://doi.org/10.1097/MS9.0000000000002275 DOI

ElSayed NA, Aleppo G, Aroda VR et al (2023) 2. Classification and diagnosis of diabetes: standards of care in diabetes—2023. Diabetes Care 46:S19–S40. https://doi.org/10.2337/dc23-S002 PubMed DOI

Ertuğrul B, Uçkay I, Schöni M et al (2020) Management of diabetic foot infections in the light of recent literature and new international guidelines. Expert Rev Anti-Infect Ther 18:293–305. https://doi.org/10.1080/14787210.2020.1730177 PubMed DOI

Esfandiari AH, Mobarezi Z, Abolbashari S, Meshkat Z (2025) Efficacy of phage therapy in diabetic foot ulcers (DFUs): a systematic review. BMC Infect Dis 25:819. https://doi.org/10.1186/s12879-025-11258-x PubMed DOI PMC

Ferry T, Kolenda C, Briot T et al (2022) Implementation of a complex bone and joint infection phage therapy centre in France: lessons to be learned after 4 years’ experience. Clin Microbiol Infect 28:145–146. https://doi.org/10.1016/j.cmi.2021.09.027 PubMed DOI

Furfaro LL, Payne MS, Chang BJ (2018) Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol 8:376. https://doi.org/10.3389/fcimb.2018.00376 PubMed DOI PMC

Galiero R, Caturano A, Vetrano E et al (2023) Peripheral neuropathy in diabetes mellitus: pathogenetic mechanisms and diagnostic options. Int J Mol Sci 24:3554. https://doi.org/10.3390/ijms24043554 PubMed DOI PMC

Ghanaim AM, Foaad MA, Gomaa EZ et al (2023) Bacteriophage therapy as an alternative technique for treatment of multidrug-resistant bacteria causing diabetic foot infection. Int Microbiol 26:343–359. https://doi.org/10.1007/s10123-022-00293-2 PubMed DOI

Ghose C, Ly M, Schwanemann LK et al (2019) The virome of cerebrospinal fluid: viruses where we once thought there were none. Front Microbiol 10:2061. https://doi.org/10.3389/fmicb.2019.02061 PubMed DOI PMC

Gilhotra RA, Rodrigues BT, Vangaveti VN et al (2016) Prevalence and risk factors of lower limb amputation in patients with end-stage renal failure on dialysis: a systematic review. Int J Nephrol 2016:4870749. https://doi.org/10.1155/2016/4870749 PubMed DOI PMC

Haldar J, Mukherjee P, Mukhopadhyay S et al (2017) Isolation of bacteria from diabetic foot ulcers with special reference to anaerobe isolation by simple two-step combustion technique in candle jar. Indian J Med Res 145:97–101. https://doi.org/10.4103/ijmr.IJMR_1436_14 PubMed DOI PMC

Harada LK, Silva EC, Campos WF et al (2018) Biotechnological applications of bacteriophages: state of the art. Microbiol Res 212:38–58. https://doi.org/10.1016/j.micres.2018.04.007 PubMed DOI

Hitchcock NM, Devequi Gomes Nunes D, Shiach J et al (2023) Current clinical landscape and global potential of bacteriophage therapy. Viruses 15:1020. https://doi.org/10.3390/v15041020 PubMed DOI PMC

Huon J-F, Montassier E, Leroy A-G et al (2020) Phages versus antibiotics to treat infected diabetic wounds in a mouse model: a microbiological and microbiotic evaluation. mSystems 5:e00542–e00520. https://doi.org/10.1128/mSystems.00542-20 PubMed DOI PMC

Hurlow JJ, Humphreys GJ, Bowling FL et al (2018) Diabetic foot infection: a critical complication. Int Wound J 15:814–821. https://doi.org/10.1111/iwj.12932 PubMed DOI PMC

Husakova J, Bem R, Fejfarova V et al (2022) Factors influencing the risk of major amputation in patients with diabetic foot ulcers treated by autologous cell therapy. J Diabetes Res 2022:3954740. https://doi.org/10.1155/2022/3954740 PubMed DOI PMC

Jeon B, Choi HJ, Kang JS et al (2017) Comparison of five systems of classification of diabetic foot ulcers and predictive factors for amputation. Int Wound J 14:537–545. https://doi.org/10.1111/iwj.12642 PubMed DOI

Jiang P, Li Q, Luo Y et al (2023) Current status and progress in research on dressing management for diabetic foot ulcer. Front Endocrinol (Lausanne) 14:1221705. https://doi.org/10.3389/fendo.2023.1221705 PubMed DOI

Johri AV, Johri P, Hoyle N et al (2021) Case report: chronic bacterial prostatitis treated with phage therapy after multiple failed antibiotic treatments. Front Pharmacol 12:692614. https://doi.org/10.3389/fphar.2021.692614 PubMed DOI PMC

Jokar J, Saleh RO, Rahimian N et al (2023) Antibacterial effects of single phage and phage cocktail against multidrug-resistant Klebsiella pneumoniae isolated from diabetic foot ulcer. Virus Genes 59:635–642. https://doi.org/10.1007/s11262-023-02037-4 PubMed DOI

Jokar J, Abdulabbas HT, Javanmardi K et al (2024) Enhancement of bactericidal effects of bacteriophage and gentamicin combination regimen against Staphylococcus aureus and Pseudomonas aeruginosa strains in a mice diabetic wound model. Virus Genes 60:80–96 PubMed DOI

Karri VVSR, Kuppusamy G, Talluri SV et al (2016) Current and emerging therapies in the management of diabetic foot ulcers. Curr Med Res Opin 32:519–542. https://doi.org/10.1185/03007995.2015.1128888 PubMed DOI

Kibby EM, Conte AN, Burroughs AM et al (2023) Bacterial NLR-related proteins protect against phage. Cell 186:2410–2424. https://doi.org/10.1016/j.cell.2023.04.015 PubMed DOI PMC

Kifelew LG, Warner MS, Morales S et al (2020) Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus. BMC Microbiol 20:204. https://doi.org/10.1186/s12866-020-01891-8 PubMed DOI PMC

Kifelew LG, Warner MS, Morales S et al (2024) Lytic activity of phages against bacterial pathogens infecting diabetic foot ulcers. Sci Rep 14:3515. https://doi.org/10.1038/s41598-024-53317-4 PubMed DOI PMC

Kim HY, Chang RYK, Morales S, Chan H-K (2021) Bacteriophage-delivering hydrogels: current progress in combating antibiotic resistant bacterial infection. Antibiotics 10:130. https://doi.org/10.3390/antibiotics10020130 PubMed DOI PMC

Kolimi P, Narala S, Nyavanandi D et al (2022) Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements. Cells 11:2439. https://doi.org/10.3390/cells11152439 PubMed DOI PMC

Kutter EM, Kuhl SJ, Abedon ST (2015) Re-establishing a place for phage therapy in Western medicine. Future Microbiol 10:685–688. https://doi.org/10.2217/fmb.15.28 PubMed DOI

Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327. https://doi.org/10.1038/nrmicro2315 PubMed DOI

Leitner L, Ujmajuridze A, Chanishvili N et al (2021) Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect Dis 21:427–436. https://doi.org/10.1016/S1473-3099(20)30330-3 PubMed DOI

Lenneman BR, Fernbach J, Loessner MJ et al (2021) Enhancing phage therapy through synthetic biology and genome engineering. Curr Opin Biotechnol 68:151–159. https://doi.org/10.1016/j.copbio.2020.11.003 PubMed DOI

Leprince A, Mahillon J (2023) Phage adsorption to gram-positive bacteria. Viruses 15:196. https://doi.org/10.3390/v15010196 PubMed DOI PMC

Letkiewicz S, Międzybrodzki R, Fortuna W et al (2009) Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis—case report. Folia Microbiol (Praha) 54:457–461. https://doi.org/10.1007/s12223-009-0064-z PubMed DOI

Li X, Du Z, Tang Z et al (2022) Distribution and drug sensitivity of pathogenic bacteria in diabetic foot ulcer patients with necrotizing fasciitis at a diabetic foot center in China. BMC Infect Dis 22:396. https://doi.org/10.1186/s12879-022-07382-7 PubMed DOI PMC

Li X, Wen S, Dong M et al (2023) The metabolic characteristics of patients at the risk for diabetic foot ulcer: a comparative study of diabetic patients with and without diabetic foot. Diabetes Metab Syndr Obes 16:3197–3211. https://doi.org/10.2147/DMSO.S430426 PubMed DOI PMC

Liden B (2017) Total contact cast system to heal diabetic foot ulcers. Surg Technol Int 30:71–76 PubMed

Lin J, Du F, Long M, Li P (2022) Limitations of phage therapy and corresponding optimization strategies: a review. Molecules 27:1857. https://doi.org/10.3390/molecules27061857 PubMed DOI PMC

Lipsky BA (2007) Empirical therapy for diabetic foot infections: are there clinical clues to guide antibiotic selection? Clin Microbiol Infect 13:351–353. https://doi.org/10.1111/j.1469-0691.2007.01697.x PubMed DOI

Lipsky BA, Armstrong DG, Citron DM et al (2005) Ertapenem versus piperacillin/tazobactam for diabetic foot infections (SIDESTEP): prospective, randomised, controlled, double-blinded, multicentre trial. Lancet 366:1695–1703. https://doi.org/10.1016/S0140-6736(05)67694-5 PubMed DOI

Lipsky BA, Senneville É, Abbas ZG et al (2020) Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update). Diabetes Metab Res Rev 36:e3280. https://doi.org/10.1002/dmrr.3280 PubMed DOI

Luong T, Salabarria A-C, Edwards RA, Roach DR (2020) Standardized bacteriophage purification for personalized phage therapy. Nat Protoc 15:2867–2890. https://doi.org/10.1038/s41596-020-0346-0 PubMed DOI

Ma Y, Pacan JC, Wang Q et al (2008) Microencapsulation of bacteriophage Felix O1 into chitosan-alginate microspheres for oral delivery. Appl Environ Microbiol 74:4799–4805. https://doi.org/10.1128/AEM.00246-08 PubMed DOI PMC

Macdonald KE, Stacey HJ, Harkin G et al (2020) Patient perceptions of phage therapy for diabetic foot infection. PLoS One 15:e0243947. https://doi.org/10.1371/journal.pone.0243947 PubMed DOI PMC

Macdonald KE, Boeckh S, Stacey HJ, Jones JD (2021) The microbiology of diabetic foot infections: a meta-analysis. BMC Infect Dis 21:770. https://doi.org/10.1186/s12879-021-06516-7 PubMed DOI PMC

Mahdy MM (2022) Isolation and characterization of bacteriophages active against Pseudomonas aeruginosa strains isolated from diabetic foot infections. Arch Razi Inst 77:2187–2200. https://doi.org/10.22092/ARI.2022.359032.2357 PubMed DOI PMC

Matheson EM, Bragg SW, Blackwelder RS (2021) Diabetes-related foot infections: diagnosis and treatment. Am Fam Physician 104:386–394 PubMed

Maurer SM, Hepp ZS, McCallin S et al (2022) Short and oral antimicrobial therapy for diabetic foot infection: a narrative review of current knowledge. J Bone Joint Infect 7:61–70. https://doi.org/10.5194/jbji-7-61-2022 DOI

McVay CS, Velásquez M, Fralick JA (2007) Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51:1934–1938. https://doi.org/10.1128/aac.01028-06 PubMed DOI PMC

Mendes JJ, Leandro C, Corte-Real S et al (2013) Wound healing potential of topical bacteriophage therapy on diabetic cutaneous wounds. Wound Repair Regen 21:595–603. https://doi.org/10.1111/wrr.12056 PubMed DOI

Merabishvili M, Monserez R, Van Belleghem J et al (2017) Stability of bacteriophages in burn wound care products. PLoS One 12:e0182121. https://doi.org/10.1371/journal.pone.0182121 PubMed DOI PMC

Mohebi S, Golestani-Hotkani Z, Foulad-Pour M et al (2023) Characterization of integrons, extended spectrum beta lactamases and genetic diversity among uropathogenic Escherichia coli isolates from Kerman, South East of Iran. Iran J Microbiol 15:616–624. https://doi.org/10.18502/ijm.v15i5.13867 PubMed DOI PMC

Mottola C, Mendes JJ, Cristino JM et al (2016) Polymicrobial biofilms by diabetic foot clinical isolates. Folia Microbiol (Praha) 61:35–43. https://doi.org/10.1007/s12223-015-0401-3 PubMed DOI

Mougakou E, Mastrogianni E, Kyziroglou M, Tziomalos K (2023) The role of novel antibiotics in the management of diabetic foot infection. Diabetes Ther 14:251–263. https://doi.org/10.1007/s13300-022-01357-2 PubMed DOI

Nadareishvili L, Hoyle N, Nakaidze N et al (2020) Bacteriophage therapy as a potential management option for surgical wound infections. Phage 1:158–165. https://doi.org/10.1089/phage.2020.0010 PubMed DOI PMC

Nazari M, Bahrami A, Jahanian F (2025) Innovative non-antibiotic strategies for combating methicillin-resistant Staphylococcus aureus in diabetic foot infections. Curr Microbiol 82:384. https://doi.org/10.1007/s00284-025-04349-0 PubMed DOI

Nir-Paz R, Onallah H, Dekel M et al (2025) Randomized double-blind study on safety and tolerability of TP-102 phage cocktail in patients with infected and non-infected diabetic foot ulcers. Med 6:100565. https://doi.org/10.1016/j.medj.2024.11.018 PubMed DOI

Norton P, Trus P, Wang F et al (2024) Understanding and treating diabetic foot ulcers: insights into the role of cutaneous microbiota and innovative therapies. Skin Health Dis 4:e399. https://doi.org/10.1002/ski2.399 PubMed DOI PMC

Oliveira M, Cunha E, Tavares L, Serrano I (2025) Antimicrobial management of complex biofilms in diabetic foot ulcers: a microbiological perspective. Expert Rev Anti-Infect Ther 23:811–828. https://doi.org/10.1080/14787210.2025.2538614 PubMed DOI

Ooi ML, Drilling AJ, Morales S et al (2019) Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngology–Head & Neck Surgery 145:723–729. https://doi.org/10.1001/jamaoto.2019.1191 DOI

Patel DR, Bhartiya SK, Kumar R et al (2021) Use of customized bacteriophages in the treatment of chronic nonhealing wounds: a prospective study. Int J Low Extrem Wounds 20:37–46. https://doi.org/10.1177/1534734619881076 PubMed DOI

Patey O, McCallin S, Mazure H et al (2018) Clinical indications and compassionate use of phage therapy: personal experience and literature review with a focus on osteoarticular infections. Viruses 11:18. https://doi.org/10.3390/v11010018 PubMed DOI PMC

Pinto AM, Cerqueira MA, Bañobre-Lópes M et al (2020) Bacteriophages for chronic wound treatment: from traditional to novel delivery systems. Viruses 12:235. https://doi.org/10.3390/v12020235 PubMed DOI PMC

Plumet L, Morsli M, Ahmad-Mansour N et al (2023) Isolation and characterization of new bacteriophages against Staphylococcal clinical isolates from diabetic foot ulcers. Viruses 15:2287. https://doi.org/10.3390/v15122287 PubMed DOI PMC

Plumet L, Magnan C, Costechareyre D et al (2025) Phage therapy: a promising approach for Staphylococcus aureus diabetic foot infections. J Virol 99:6. https://doi.org/10.1128/jvi.00458-25 DOI

Pouget C, Dunyach-Remy C, Pantel A et al (2020) Biofilms in diabetic foot ulcers: significance and clinical relevance. Microorganisms 8:1580. https://doi.org/10.3390/microorganisms8101580 PubMed DOI PMC

Qadir MI, Mobeen T, Masood A (2018) Phage therapy: progress in pharmacokinetics. Braz J Pharm Sci 54:e17093. https://doi.org/10.1590/s2175-97902018000117093 DOI

Rastegar S, Skurnik M, Niaz H et al (2024) Isolation, characterization, and potential application of Acinetobacter baumannii phages against extensively drug-resistant strains. Virus Genes 60:725–736. https://doi.org/10.1007/s11262-024-02103-5 PubMed DOI

Rehman ZU, Khan J, Noordin S (2023) Diabetic foot ulcers: contemporary assessment and management. J Pak Med Assoc 73:1480–1487. https://doi.org/10.47391/JPMA.6634 PubMed DOI

Roberts AD, Simon GL (2012) Diabetic foot infections: the role of microbiology and antibiotic treatment. Semin Vasc Surg 25:75–81. https://doi.org/10.1053/j.semvascsurg.2012.04.010 PubMed DOI

Robineau O, Nguyen S, Senneville E (2016) Optimising the quality and outcomes of treatments for diabetic foot infections. Expert Rev Anti-Infect Ther 14:817–827. https://doi.org/10.1080/14787210.2016.1214072 PubMed DOI

Rodrigues BT, Vangaveti VN, Urkude R et al (2022) Prevalence and risk factors of lower limb amputations in patients with diabetic foot ulcers: a systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 16:102397. https://doi.org/10.1016/j.dsx.2022.102397 DOI

Rodríguez-Rodríguez N, Martínez-Jiménez I, García-Ojalvo A et al (2021) Wound chronicity, impaired immunity and infection in diabetic patients. MEDICC Rev 23:44–58. https://doi.org/10.37757/MR2021.V23.N3.8 DOI

Ryan EM, Gorman SP, Donnelly RF, Gilmore BF (2011) Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol 63:1253–1264. https://doi.org/10.1111/j.2042-7158.2011.01324.x PubMed DOI

Sachdeva C, Satyamoorthy K, Murali TS (2022) Microbial interplay in skin and chronic wounds. Curr Clin Microbiol Rep 9:21–31. https://doi.org/10.1007/s40588-022-00180-4 DOI

Sadeghpour Heravi F, Zakrzewski M, Vickery K et al (2019) Bacterial diversity of diabetic foot ulcers: current status and future prospectives. J Clin Med 8:1935. https://doi.org/10.3390/jcm8111935 PubMed DOI PMC

Saeedi P, Petersohn I, Salpea P et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843 PubMed DOI

Saunier M, Fortier L-C, Soutourina O (2024) RNA-based regulation in bacteria-phage interactions. Anaerobe 87:102851. https://doi.org/10.1016/j.anaerobe.2024.102851 PubMed DOI

Schooley RT, Biswas B, Gill JJ et al (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61:e00954–e00917. https://doi.org/10.1128/aac.00954-17 PubMed DOI PMC

Seth AK, Geringer MR, Nguyen KT et al (2013) Bacteriophage therapy for Staphylococcus aureus biofilm–infected wounds: a new approach to chronic wound care. Plast Reconstr Surg 131:225–234. https://doi.org/10.1097/PRS.0b013e31827e47cd PubMed DOI

Shaheen MMA, Al Dahab S, Abu Fada M, Idieis R (2021) Isolation and characterization of bacteria from diabetic foot ulcer: amputation, antibiotic resistance and mortality rate. Int J Diabetes Dev Ctries 42:529–537. https://doi.org/10.1007/s13410-021-00997-7 PubMed DOI

Shen H-Y, Liu Z-H, Hong J-S et al (2021) Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing. J Control Release 331:154–163. https://doi.org/10.1016/j.jconrel.2021.01.024 PubMed DOI

Shetru MN, Karched M, Agsar D (2021) Locally isolated broad host-range bacteriophage kills methicillin-resistant Staphylococcus aureus in an in vivo skin excisional wound model in mice. Microb Pathog 152:104744. https://doi.org/10.1016/j.micpath.2021.104744 PubMed DOI

Shkoporov AN, Hill C (2019) Bacteriophages of the human gut: the known unknown of the microbiome. Cell Host Microbe 25:195–209. https://doi.org/10.1016/j.chom.2019.01.017 PubMed DOI

Signorelli SS, Marino E, Scuto S, Di Raimondo D (2020) Pathophysiology of peripheral arterial disease (PAD): a review on oxidative disorders. Int J Mol Sci 21:4393. https://doi.org/10.3390/ijms21124393 PubMed DOI PMC

Silverberg B (2021) A structured approach to skin and soft tissue infections (SSTIs) in an ambulatory setting. Clin Pract 11:65–74. https://doi.org/10.3390/clinpract11010011 PubMed DOI PMC

Sloan G, Selvarajah D, Tesfaye S (2021) Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat Rev Endocrinol 17:400–420. https://doi.org/10.1038/s41574-021-00496-z PubMed DOI

Smith K, Collier A, Townsend EM et al (2016) One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers. BMC Microbiol 16:1–12. https://doi.org/10.1186/s12866-016-0665-z DOI

Song JY (2011) Antimicrobial therapy in diabetic foot infections. J Korean Diabetes 12:83–87. https://doi.org/10.4093/jkd.2011.12.2.83 DOI

Speck P, Smithyman A (2016) Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol Lett 363:fnv242. https://doi.org/10.1093/femsle/fnv242 PubMed DOI

Steele A, Stacey HJ, De Soir S, Jones JD (2020) The safety and efficacy of phage therapy for superficial bacterial infections: a systematic review. Antibiotics 9:754. https://doi.org/10.3390/antibiotics9110754 PubMed DOI PMC

Taha OA, Connerton PL, Connerton IF, El-Shibiny A (2018) Bacteriophage ZCKP1: a potential treatment for Klebsiella pneumoniae isolated from diabetic foot patients. Front Microbiol 9:2127. https://doi.org/10.3389/fmicb.2018.02127 PubMed DOI PMC

Turzańska K, Adesanya O, Rajagopal A et al (2023) Improving the management and treatment of diabetic foot infection: challenges and research opportunities. Int J Mol Sci 24:3913. https://doi.org/10.3390/ijms24043913 PubMed DOI PMC

Uberoi A, McCready-Vangi A, Grice EA (2024) The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol 22:507–521. https://doi.org/10.1038/s41579-024-01035-z PubMed DOI

Verbeken G, Huys I, Pirnay J-P et al (2014) Taking bacteriophage therapy seriously: a moral argument. BioMed Res Int 2014:621316. https://doi.org/10.1155/2014/621316 PubMed DOI PMC

Wang A, Lv G, Cheng X et al (2020) Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition). Burns Trauma 8:tkaa017. https://doi.org/10.1093/burnst/tkaa017 PubMed DOI PMC

Wang X, Yuan C-X, Xu B, Yu Z (2022) Diabetic foot ulcers: classification, risk factors and management. World J Diabetes 13:1049–1065. https://doi.org/10.4239/wjd.v13.i12.1049 PubMed DOI PMC

Wang Y, Fan H, Tong Y (2023) Unveil the secret of the bacteria and phage arms race. Int J Mol Sci 24:4363. https://doi.org/10.3390/ijms24054363 PubMed DOI PMC

Wang B, Du L, Dong B et al (2024) Current knowledge and perspectives of phage therapy for combating refractory wound infections. Int J Mol Sci 25:5465. https://doi.org/10.3390/ijms25105465 PubMed DOI PMC

Weber-Dabrowska B, Mulczyk M, Górski A (2003) Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man. Transplant Proc 35:1385–1386. https://doi.org/10.1016/S0041-1345(03)00525-6 PubMed DOI

Weber-Dąbrowska B, Jończyk-Matysiak E, Żaczek M et al (2016) Bacteriophage procurement for therapeutic purposes. Front Microbiol 7:1177. https://doi.org/10.3389/fmicb.2016.01177 PubMed DOI PMC

Weiss M, Denou E, Bruttin A et al (2009) In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli. Virology 393:16–23. https://doi.org/10.1016/j.virol.2009.07.020 PubMed DOI

Williams P, Bakewell Z, Akinlade B, Russell DA (2022) WIfi scoring: a reliable tool for risk stratification in the diabetic foot clinic. J Vasc Soc Gt Br Irel 1:71–76. https://doi.org/10.54522/jvsgbi.2022.020 DOI

Yan X, Song J, Zhang L, Li X (2022) Analysis of risk factors for multidrug-resistant organisms in diabetic foot infection. BMC Endocr Disord 22:46. https://doi.org/10.1186/s12902-022-00957-0 PubMed DOI PMC

Yang S, Hu L, Han R, Yang Y (2022) Neuropeptides, inflammation, biofilms, and diabetic foot ulcers. Exp Clin Endocrinol Diabetes 130:439–446. https://doi.org/10.1055/a-1493-0458 PubMed DOI

Yang L, Zhang D, Li W et al (2023) Biofilm microenvironment triggered self-enhancing photodynamic immunomodulatory microneedle for diabetic wound therapy. Nat Commun 14:7658. https://doi.org/10.1038/s41467-023-43067-8 PubMed DOI PMC

Young MJ, Hall LML, Jones JD (2022) Phage therapy for diabetic foot infection. Diabet Foot 25:29

Young MJ, Hall LML, Merabishvilli M et al (2023) Phage therapy for diabetic foot infection: a case series. Clin Ther 45:797–801. https://doi.org/10.1016/j.clinthera.2023.06.009 PubMed DOI

Zaman S, Bin, Hussain MA, Nye R et al (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus 9:e1403. https://doi.org/10.7759/cureus.1403 PubMed DOI PMC

Zhan LX, Branco BC, Armstrong DG, Mills Sr JL (2015) The Society for Vascular Surgery lower extremity threatened limb classification system based on wound, ischemia, and foot infection (WIfI) correlates with risk of major amputation and time to wound healing. J Vasc Surg 61:939–944. https://doi.org/10.1016/j.jvs.2014.11.045 PubMed DOI

Zhang M, Jiang Z, Li D et al (2015) Oral antibiotic treatment induces skin microbiota dysbiosis and influences wound healing. Microb Ecol 69:415–421. https://doi.org/10.1007/s00248-014-0504-4 PubMed DOI

Zhao R, Liang H, Clarke E et al (2016) Inflammation in chronic wounds. Int J Mol Sci 17:2085. https://doi.org/10.3390/ijms17122085 PubMed DOI PMC

Zhao J, Liu Y, Xiao C et al (2017) Efficacy of phage therapy in controlling rabbit colibacillosis and changes in cecal microbiota. Front Microbiol 8:957. https://doi.org/10.3389/fmicb.2017.00957 PubMed DOI PMC

Zubair M, Malik A, Ahmad J (2015) Diabetic foot ulcer: a review. Am J Intern Med 3:28–49. https://doi.org/10.11648/j.ajim.20150302.11 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...