Nitric Oxide at the Nexus of ACE2 Biology and COVID-19: Implications for Cardiovascular and Neurodegenerative Comorbidities

. 2025 Dec 31 ; 74 (Suppl 2) : S171-S184.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41532626

SARS-CoV-2 engages ACE2 for cell entry, perturbing the counter-regulatory ACE2/Ang-(1-7)/Mas axis and shifting the renin angiotensin system toward ACE/Ang II/AT1 signaling, with a concomitant reduction in nitric oxide (NO) bioavailability. NO sits at the crossroads of these pathways, acting both as an antiviral modulator of spike-ACE2 interactions and as a downstream mediator of Mas-dependent endothelial protection. This review summarizes evidence on NO across three layers: (i) viral entry (S nitrosylation of spike/ACE2, protease modulation), (ii) cardiovascular comorbidities (hypertension, obesity, diabetes) where ACE2 downregulation impairs endothelial NO synthase (eNOS)-dependent NO production and promotes thrombosis and microvascular dysfunction, and (iii) neurovascular/ neurodegenerative sequelae, in which renin-angiotensin-aldosterone system (RAAS) dysregulation along with imbalance between protective eNOS/nNOS and inflammatory iNOS fosters blood-brain barrier disruption, microthrombosis, and cognitive impairment. Shared mechanisms - endotheliitis, microvascular dysfunction, and neuroinflammation may explain convergent risks for cardiac injury and cognitive decline in long COVID-19. Putative therapeutic strategies may include restoring physiological NO (via Mas agonism, Ang-(1-7), inhibition of Ang 1-7 degradation and recombinant ACE2), pulmonary-selective inhaled NO, hybrid S nitrosylated agents, and selective attenuation of iNOS/peroxynitrite alongside endothelial support. Targeted modulation - enhancing eNOS/nNOS while constraining iNOS offers a unified framework to mitigate both cardiovascular and neurodegenerative consequences of COVID-19.

Zobrazit více v PubMed

Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23:3–20. doi: 10.1038/s41580-021-00418-x. PubMed DOI PMC

Tikellis C, Thomas MC. Angiotensin-Converting Enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012;2012:256294. doi: 10.1155/2012/256294. PubMed DOI PMC

Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong J-Ch, Turner AJ, Raizada MK, Grnat MB, Oudit GY. Angiotensin-Converting Enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ Res. 2020;126:1456–1474. doi: 10.1161/CIRCRESAHA.120.317015. PubMed DOI PMC

Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–637. doi: 10.1002/path.1570. PubMed DOI PMC

Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1–7 axis of the renin-angiotensin system in heart failure. Circ Res. 2016;118:1313–1326. doi: 10.1161/CIRCRESAHA.116.307708. PubMed DOI PMC

Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7) Physiol Rev. 2018;98:505–553. doi: 10.1152/physrev.00023.2016. PubMed DOI PMC

Sampaio WO, dos Santos RAS, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Tauyz RM. Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation. Hypertension. 2007;49:185–192. doi: 10.1161/01.HYP.0000251865.35728.2f. PubMed DOI

Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, Speth RC, Raizada MK, Katovich MJ. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7) Am J Physiol Heart Circ Physiol. 2007;292:H736–742. doi: 10.1152/ajpheart.00937.2006. PubMed DOI

Tallant EA, Diz DI, Ferrario CM. Antiproliferative actions of angiotensin-(1–7) in vascular smooth muscle. Hypertension. 1999;34(4 Pt 2):950–957. doi: 10.1161/01.HYP.34.4.950. PubMed DOI

Khajehpour S, Aghazadeh-Habashi A. Targeting the protective arm of the renin-angiotensin system: focused on angiotensin-(1–7) J Pharmacol Exp Ther. 2021;377:64–74. doi: 10.1124/jpet.120.000397. PubMed DOI

Gwathmey TM, Pendergrass KD, Reid SD, Rose JC, Diz DI, Chappell MC. Angiotensin-(1–7)-angiotensin-converting enzyme 2 attenuates reactive oxygen species formation to angiotensin II within the cell nucleus. Hypertension. 2010;55:166–71. doi: 10.1161/HYPERTENSIONAHA.109.141622. PubMed DOI PMC

Rajtik T, Galis P, Bartosova L, Paulis L, Goncalvesova E, Klimas J. Alternative RAS in various hypoxic conditions: from myocardial infarction to COVID-19. Int J Mol Sci. 2021;22:12800. doi: 10.3390/ijms222312800. PubMed DOI PMC

Patel VB, Bodiga S, Basu R, Das SK, Wang W, Wang Z, Lo J, Grant MB, Zhong J, Kassiri Z, Oudit GY. Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: a critical role of the angiotensin II/AT1 receptor axis. Circ Res. 2012;110:1322–35. doi: 10.1161/CIRCRESAHA.112.268029. PubMed DOI PMC

Jiang T, Gao L, Lu J, Zhang YD. ACE2-Ang-(1–7)-Mas axis in brain: a potential target for prevention and treatment of ischemic stroke. Curr Neuropharmacol. 2013;11(2):209–17. doi: 10.2174/1570159X11311020007. PubMed DOI PMC

Chappell MC, Alhenc-Gelas F, Ferrario CM. Bradykinin and the "bradykinin storm" in COVID-19: mechanistic insights and therapeutic implications. Front Physiol. 2023;14:1167815.

Paulis L, Vigl B, Trubačová S, Poglitsch M, Domenig O, Balis P, Barta A, Šimko F. Alternative RAS pathway activation attenuates monocrotaline-induced pulmonary arterial hypertension. Acta Physiologica (Oxf) 2024;240(Suppl s731):P37.

Akaberi D, Krambrich J, Ling J, Luni C, Hedenstierna G, Järhult JD, Lennerstrand J, Lundkvist A. Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro. Redox Biol. 2020;37:101734. doi: 10.1016/j.redox.2020.101734. PubMed DOI PMC

Akerström S, Mousavi-Jazi M, Klingström J, Leijon M, Lundkvist A, Mirazimi A. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol. 2005;79:1966–1969. doi: 10.1128/JVI.79.3.1966-1969.2005. PubMed DOI PMC

Zhou F, Yu T, Du R, Fan G, Liu Y, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3. PubMed DOI PMC

Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 outbreak in China. JAMA. 2020;323:1239–1242. doi: 10.1001/jama.2020.2648. PubMed DOI

Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment. Cardiovasc Res. 2020;116:1666–1687. doi: 10.1093/cvr/cvaa106. PubMed DOI PMC

Willems LH, Jacobs LMC, Groh LA, Ten Cate H, Spronk HMH, Wilson-Storey B, Hannink G, van Kuijk SMJ, Ghossein-Doha C, Nagy M, Thijssen DHJ, van Petersen AS, Warlé MC. Vascular function, systemic inflammation, and coagulation activation 18 months after COVID-19 infection: An observational cohort study. J Clin Med. 2023;12:1413. doi: 10.3390/jcm12041413. PubMed DOI PMC

Crackower MA, Sarao R, Oudit GY, Yagil Ch, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, Scholey J, Ferrario CM, Manoukian AS, Chappell MC, Backx PH, Yagil Y, Penninger JM. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–828. doi: 10.1038/nature00786. PubMed DOI

Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin-angiotensin-aldosterone system blockers and the risk of COVID-19. N Engl J Med. 2020;382:2431–2440. doi: 10.1056/NEJMoa2006923. PubMed DOI PMC

de Almeida-Pititto B, Dualib PM, Zajdenverg L, Dantas JR, de Souza FD, Rodacki M, Bertoluci MC Brazilian Diabetes Society Study Group (SBD) Severity and mortality of COVID 19 in patients with diabetes, hypertension and cardiovascular disease: a meta-analysis. Diabetol Metab Syndr. 2020;12:75. doi: 10.1186/s13098-020-00586-4. PubMed DOI PMC

Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst ChH, Alsukait RF, Alluhidan M, Alazemi N, Shekar M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21:e13128. doi: 10.1111/obr.13128. PubMed DOI PMC

Lighter J, Phillips M, Hochman S, Sterling S, Johnson D, Francois F, Stachel A. Obesity in patients younger than 60 years is a risk factor for COVID-19 hospital admission. Clin Infect Dis. 2020;71:896–897. doi: 10.1093/cid/ciaa415. PubMed DOI PMC

Wysocki J, Ye M, Soler MJ, Gurley SB, Xiao HD, Bernstein KE, Coffman TM, Chen S, Batlle D. ACE and ACE2 activity in diabetic mice. Diabetes. 2006;55:2132–2139. doi: 10.2337/db06-0033. PubMed DOI

Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia - a systematic review. Diabetes Metab Syndr. 2020;14:395–403. doi: 10.1016/j.dsx.2020.04.018. PubMed DOI PMC

Barron E, Bakhai Ch, Kar P, Weaver A, Bradley D, Ismail H, Knighton P, Holman N, Khunti K, Sattar N, Wareham NJ, Young B, Valabhji J. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England. Lancet Diabetes Endocrinol. 2020;8:813–822. doi: 10.1016/S2213-8587(20)30272-2. PubMed DOI PMC

Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ Res. 2018;122:624–638. doi: 10.1161/CIRCRESAHA.117.311586. PubMed DOI PMC

Chang SY, Chen YW, Chenier I, Tran Sle M, Zhang SL. Angiotensin II type II receptor deficiency accelerates the development of nephropathy in type I diabetes via oxidative stress and ACE2. Exp Diabetes Res. 2011;2011:521076. doi: 10.1155/2011/521076. PubMed DOI PMC

Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5:802–810. doi: 10.1001/jamacardio.2020.0950. PubMed DOI PMC

Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wand X, Lu Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020;5:811–818. doi: 10.1001/jamacardio.2020.1017. PubMed DOI PMC

Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein Ch, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020;383:120–128. doi: 10.1056/NEJMoa2015432. PubMed DOI PMC

Medina D, Mehay D, Arnold AC. Sex differences in cardiovascular actions of the renin-angiotensin system. Clin Auton Res. 2020;30:393–408. doi: 10.1007/s10286-020-00720-2. PubMed DOI PMC

Simko F, Hrenak J, Adamcova M, Paulis L. Renin-Angiotensin-Aldosterone System: Friend or foe –the matter of balance insight on history, therapeutic implications and COVID-19 interactions. Int J Mol Sci. 2021;22:3217. doi: 10.3390/ijms22063217. PubMed DOI PMC

South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. 2020;318:H1084–H1090. doi: 10.1152/ajpheart.00217.2020. PubMed DOI PMC

Pelle MC, Zaffina I, Lucà S, Forte V, Trapanese V, Melina M, Giofrè F, Arturi F. Endothelial Dysfunction in COVID-19: Potential Mechanisms and Possible Therapeutic Options. Life (Basel) 2022;12:1605. doi: 10.3390/life12101605. PubMed DOI PMC

Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113:1888–1904. doi: 10.1161/CIRCULATIONAHA.105.563213. PubMed DOI

Sudhakar M, Winfred SB, Meiyazhagan G, Venkatachalam DP. Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem. 2022;477:1155–1193. doi: 10.1007/s11010-022-04356-w. PubMed DOI PMC

Šerý O, Dziedzinska R. Risk impact of SARS-CoV-2 coronavirus and spike protein on cardiac tissue: a comprehensive review. Physiol Res. 2024;73(S3):S655–S669. doi: 10.33549/physiolres.935476. PubMed DOI PMC

Rodrigues Prestes TR, Rocha NP, Miranda AS, Teixeira AL, Simoes-E-Silva AC. The anti-inflammatory potential of ACE2/Angiotensin-(1–7)/Mas receptor axis: Evidence from basic and clinical research. Curr Drug Targets. 2017;18:1301–1313. doi: 10.2174/1389450117666160727142401. PubMed DOI

Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, Kneen R, Defres S, Sejvar J, Solomon T. Neurological associations of COVID-19. Lancet Neurol. 2020;19:767–783. doi: 10.1016/S1474-4422(20)30221-0. PubMed DOI PMC

Li J, Kong X, Liu T, Xian M, Wei J. The Role of ACE2 in Neurological Disorders: From Underlying Mechanisms to the Neurological Impact of COVID-19. Int J Mol Sci. 2024;25:9960. doi: 10.3390/ijms25189960. PubMed DOI PMC

Labandeira-Garcia JL, Rodríguez-Perez AI, Garrido-Gil P, Rodriguez-Pallares J, Lanciego JL, Guerra MJ. Brain renin-angiotensin system and microglial polarization: Implications for aging and neurodegeneration. Front Aging Neurosci. 2017;9:129. doi: 10.3389/fnagi.2017.00129. PubMed DOI PMC

Kehoe PG, Wong S, Al Mulhim N, Palmer LE, Miners JS. Angiotensin-converting enzyme 2 is reduced in Alzheimer's disease in association with increasing amyloid-β and tau pathology. Alzheimers Res Ther. 2016;8:50. doi: 10.1186/s13195-016-0217-7. PubMed DOI PMC

Labandeira-Garcia JL, Labandeira CM, Guerra MJ, Rodriguez-Perez AI. The role of the brain renin-angiotensin system in Parkinson's disease. Transl Neurodegener. 2024;13:22. doi: 10.1186/s40035-024-00410-3. PubMed DOI PMC

Barzegar M, Stokes KY, Chernyshev O, Kelley RE, Alexander JS. The role of the ACE2/MasR axis in ischemic stroke: New insights for therapy. Biomedicines. 2021;9:1667. doi: 10.3390/biomedicines9111667. PubMed DOI PMC

Nakamura T, Lipton SA. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol Sci. 2016;37:73–84. doi: 10.1016/j.tips.2015.10.002. PubMed DOI PMC

Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, Miao X, Li Y, Hu B. Neurologic manifestations of hospitalized patients with COVID-19 in Wuhan, China. JAMA Neurol. 2020;77:683–690. doi: 10.1001/jamaneurol.2020.1127. PubMed DOI PMC

Pinzon RT, Wijaya VO, Buana RB, Al Jody A, Nunsio PN. Neurologic characteristics in coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Front Neurol. 2020;11:565. doi: 10.3389/fneur.2020.00565. PubMed DOI PMC

Townsend L, Dyer AH, Jones K, Dunne J, Mooney A, Gaffney F, O'Connor L, Leavy D, O'Brien K, Dowds J, Sugrue JA, Hopkins D, Martin-Loeches I, Cheallaigh CN, Nadarajan P, McLaughlin AM, Bourke NM, Bergin C, O'Farrelly C, Bannan C, Conlon N. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020;15:e0240784. doi: 10.1371/journal.pone.0240784. PubMed DOI PMC

Ayoubkhani D, Bermingham Ch, Pouwels KB, Glickman M, Nafilyan V, Zaccardi F, Khunti K, Alwan NA, Walker AS. Trajectory of long covid symptoms after covid-19 vaccination: community based cohort study. BMJ. 2022;377:e069676. doi: 10.1136/bmj-2021-069676. PubMed DOI PMC

Lim S, Bae JH, Kwon H-S, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021;17(1):11–30. doi: 10.1038/s41574-020-00435-4. PubMed DOI PMC

Taquet M, Geddes JR, Husain M, Luciano S, Harrison P. 6-month neurological and psychiatric outcomes in 236,379 survivors of COVID-19: a retrospective cohort study. Lancet Psychiatry. 2021;8:416–427. doi: 10.1016/S2215-0366(21)00084-5. PubMed DOI PMC

Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of COVID-19. Nat Med. 2022;28:2406–2415. doi: 10.1038/s41591-022-02001-z. PubMed DOI PMC

Hampshire A, Chatfield DA, Phil MAM, Jolly A, Trender W, Hellyer PJ, Del Giovane M, Newcombe VFJ, Outtrim JG, Warne B, Bhatti J, Pointon L, Elmer A, Sithole N, Bradley J, Kingston N, Sawcer SJ, Bullmore ET, Rowe JB, Menon DK. Multivariate profile and acute-phase correlates of cognitive deficits in a COVID-19 hospitalised cohort. EClinicalMedicine. 2022;47:101417. doi: 10.1016/j.eclinm.2022.101417. PubMed DOI PMC

Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424. doi: 10.1152/physrev.00029.2006. PubMed DOI PMC

Garthwaite J. Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci. 2008;27:2783–802. doi: 10.1111/j.1460-9568.2008.06285.x. PubMed DOI PMC

Nakamura T, Lipton SA. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol Sci. 2016;37:73–84. doi: 10.1016/j.tips.2015.10.002. PubMed DOI PMC

Heneka MT, Golenbock D, Latz E, Morgan D, Brown R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther. 2020;12:69. doi: 10.1186/s13195-020-00640-3. PubMed DOI PMC

Martins ALV, Annoni F, da Silva FA, Bolais-Ramos L, de Oliveira GC, Ribeiro RC, Diniz MML, Silva TGF, Pinheiro BD, Rodriques NA, Dos Santos Matos AH, Motta-Santos D, Campagnole-Santos MJ, Verano-Braga T, Taccone FS, Santos RAS. Angiotensin-(1–7) infusion in COVID-19 patients admitted to the ICU: a seamless phase 1–2 randomized clinical trial. Ann Intensive Care. 2024;14:139. doi: 10.1186/s13613-024-01369-0. PubMed DOI PMC

Garren MR, Ashcraft M, Qian Y, Douglass M, Brisbois EJ, Handa H. Nitric oxide and viral infection: Recent developments in antiviral therapies and platforms. Appl Mater Today. 2020;22:100887. doi: 10.1016/j.apmt.2020.100887. PubMed DOI PMC

Rossaint R, Falke KJ, López F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med. 1993;328:399–405. doi: 10.1056/NEJM199302113280605. PubMed DOI

Prakash A, Kaur S, Kaur C, Prabha PK, Bhatacharya A, Sarma P, Medhi B. Efficacy and safety of inhaled nitric oxide in the treatment of severe/critical COVID-19 patients: A systematic review. Indian J Pharmacol. 2021;53:236–243. doi: 10.4103/ijp.ijp_382_21. PubMed DOI PMC

Zamanian RT, Pollack ChV, Jr, Gentile MA, Rashid M, Fox JCh, Mahaffey KW, de Jesus Perez V. Outpatient inhaled nitric oxide in a patient with vasoreactive idiopathic pulmonary arterial hypertension and COVID-19 infection. Am J Respir Crit Care Med. 2020;202:130–132. doi: 10.1164/rccm.202004-0937LE. PubMed DOI PMC

Tsui DY, Gambino A, Wanstall JC. S-nitrosocaptopril: in vitro characterization of pulmonary vascular effects in rats. Br J Pharmacol. 2003;138:855–64. doi: 10.1038/sj.bjp.0705128. PubMed DOI PMC

Oh CK, Nakamura T, Beutler N, Zhang X, Piña-Crespo J, Talantova M, et al. Targeted protein S-nitrosylation of ACE2 inhibits SARS-CoV-2 infection. Nat Chem Biol. 2023;19:275–283. doi: 10.1038/s41589-022-01149-6. PubMed DOI PMC

Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004;75:639–653. doi: 10.1016/j.lfs.2003.10.042. PubMed DOI

Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med. 2011;51:951–966. doi: 10.1016/j.freeradbiomed.2011.01.026. PubMed DOI PMC

Zicha J, Dobesová Z, Kunes J. Relative deficiency of nitric oxide-dependent vasodilation in salt-hypertensive Dahl rats: the possible role of superoxide anions. J Hypertens. 2001;19:247–54. doi: 10.1097/00004872-200102000-00011. PubMed DOI

Endres M. Statins: potential new indications in inflammatory conditions. Atheroscler Suppl. 2006;7:31–35. doi: 10.1016/j.atherosclerosissup.2006.01.005. PubMed DOI

Dayar E, Pechanova O. Targeted strategy in lipid-lowering therapy. Biomedicines. 2022;10:1090. doi: 10.3390/biomedicines10051090. PubMed DOI PMC

Şaman E, Cebova M, Barta A, Koneracka M, Zavisova V, Eckstein-Andicsova A, Danko M, Mosnacek J, Pechanova O. Combined therapy with simvastatin- and coenzyme-Q10-loaded nanoparticles upregulates the Akt-eNOS pathway in experimental metabolic syndrome. Int J Mol Sci. 2022;24:276. doi: 10.3390/ijms24010276. PubMed DOI PMC

Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 2009;37:153–168. doi: 10.1007/s00726-008-0210-y. PubMed DOI PMC

Tosato M, Calvani R, Picca A, Ciciarello F, Galluzzo V, Coelho-Júnior HJ, et al. Gemelli against COVID-19 Post-Acute Care Team. Effects of L-Arginine plus vitamin C supplementation on physical performance, endothelial function, and persistent fatigue in adults with long COVID: A single-blind randomized controlled trial. Nutrients. 2022;14:4984. doi: 10.3390/nu14234984. PubMed DOI PMC

Trimarco V, Izzo R, Lombardi A, Coppola A, Fiorentino G, Santulli G. Beneficial effects of L-Arginine in patients hospitalized for COVID-19: New insights from a randomized clinical trial. Pharmacol Res. 2023;191:106702. doi: 10.1016/j.phrs.2023.106702. PubMed DOI PMC

Walker MA, Bailey TG, McIlvenna L, Allen JD, Green DJ, Askew CD. Acute dietary nitrate supplementation improves flow mediated dilatation of the superficial femoral artery in healthy older males. Nutrients. 2019;11:954. doi: 10.3390/nu11050954. PubMed DOI PMC

Pechanova O, Dayar E, Cebova M. Therapeutic potential of polyphenols-loaded polymeric nanoparticles in cardiovascular system. Molecules. 2020;25:3322. doi: 10.3390/molecules25153322. PubMed DOI PMC

Vita JA. Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr. 2005;81(1 Suppl):292S–297S. doi: 10.1093/ajcn/81.1.292S. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...