Cognitive training, exercise training or combined training? A comparative effectiveness research study on subjective and objective cognitive outcomes in multiple sclerosis
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie, srovnávací studie
PubMed
41543747
PubMed Central
PMC12811355
DOI
10.1007/s00415-025-13535-w
PII: 10.1007/s00415-025-13535-w
Knihovny.cz E-zdroje
- Klíčová slova
- Cognitive impairment, Cognitive rehabilitation, Exercise training, Multiple sclerosis, Neurorehabilitation,
- MeSH
- dospělí MeSH
- kognitivní dysfunkce * etiologie rehabilitace MeSH
- kognitivní trénink * MeSH
- lidé středního věku MeSH
- lidé MeSH
- neuropsychologické testy MeSH
- roztroušená skleróza * komplikace rehabilitace psychologie terapie MeSH
- srovnávací výzkum účinnosti MeSH
- terapie cvičením * metody MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- srovnávací studie MeSH
OBJECTIVE: Cognitive impairment (CI) in people with multiple sclerosis (pwMS) may be present from the onset, is common, and has a profound impact on those affected. This study compared the effectiveness of three different therapeutic approaches (computerized cognitive training, BrainStim (BS); treadmill walking (TW); combined training (BS + TW)) on subjective and objective cognitive functioning in pwMS and CI. METHODS: 61 pwMS were recruited from the Department of Neurology outpatient clinic of the University Hospital Düsseldorf and neurologists in private practice. After screening for eligibility, pwMS were randomized into three treatment arms: 1) BS, 2) TW, 3) BS + TW. Subjective and objective cognitive functioning were evaluated before and after intervention, including the Perceived Deficits Questionnaire (PDQ-20) and Symbol Digit Modalities Test (SDMT) as primary end points, respectively. RESULTS: 46 pwMS entered the final analysis (n = 15 excluded). Change scores revealed significant effects on PDQ20 total score for all three treatment groups. These effects were stable over 6 months in the BS + TW group only. Moreover, change scores revealed significant effects on the SDMT for the TW group and BS + TW group, lasting 6 months. Between-group differences were not significant. CONCLUSION: Comparing three different behavioral treatments, we found that exercise training (TW), computer-based cognitive training (BS), and their combination (BS + TW) significantly improved subjective cognitive performance, with the combined group showing the most long-lasting effect. Objective cognitive performance improved significantly in the TW and BS + TW group, while cognitive training alone showed no effect. Results suggest that combining exercise with cognitive training may provide additional cognitive benefits than either intervention alone.
Brain and Mind Centre University of Sydney Sydney NSW Australia
COGITO Center for Applied Neurocognition and Neuropsychological Research Düsseldorf Germany
Department of Experimental Psychology Heinrich Heine University Düsseldorf Germany
Department of Neurology Maria Hilf Clinics Mönchengladbach Germany
Department of Neurology Medical University of Vienna Vienna Austria
Department of Neurology Palacky University Olomouc Olomouc Czechia
Zobrazit více v PubMed
Penner I-K (2016) Evaluation of cognition and fatigue in multiple sclerosis: daily practice and future directions. Acta Neurol Scand 134:19–23. 10.1111/ane.12651 PubMed DOI
Kobelt G, Thompson A, Berg J, Gannedahl M, Eriksson J, Group, the M.S., Platform, the E.M.S. (2017) New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler J 23:1123–1136. 10.1177/1352458517694432 PubMed DOI PMC
Achiron A (2003) Cognitive impairment in probable multiple sclerosis. J Neurol Neurosurg Psychiatry 74:443–446. 10.1136/jnnp.74.4.443 PubMed DOI PMC
Benedict RHB, Amato MP, DeLuca J, Geurts JJG (2020) Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol 19:860–871. 10.1016/S1474-4422(20)30277-5 PubMed DOI PMC
Rao SM, Leo GJ, Ellington L, Nauertz T, Bernardin L, Unverzagt F (1991) Cognitive dysfunction in multiple sclerosis. Neurology 41:692–696. 10.1212/WNL.41.5.692 PubMed DOI
Kalb R, Beier M, Benedict RH, Charvet L, Costello K, Feinstein A, Gingold J, Goverover Y, Halper J, Harris C, Kostich L, Krupp L, Lathi E, LaRocca N, Thrower B, DeLuca J (2018) Recommendations for cognitive screening and management in multiple sclerosis care. Mult Scler J 24:1665–1680. 10.1177/1352458518803785 PubMed DOI PMC
Penner I-K, Warnke C (2021) Kognitive Störungen bei multipler Sklerose. DGNeurologie 4:184–186. 10.1007/s42451-021-00327-5 DOI
Zaratin P, Vermersch P, Amato MP, Brichetto G, Coetzee T, Cutter G, Edan G, Giovannoni G, Gray E, Hartung HP, Hobart J, Helme A, Hyde R, Khan U, Leocani L, Mantovani LG, McBurney R, Montalban X, Penner I-K, Uitdehaag BMJ, Valentine P, Weiland H, Bertorello D, Battaglia MA, Baneke P, Comi G (2022) The agenda of the global patient reported outcomes for multiple sclerosis (PROMS) initiative: progresses and open questions. Mult Scler Relat Disord 61:103757. 10.1016/j.msard.2022.103757 PubMed DOI
Lerede A, Rodgers J, Middleton RM, Hampshire A, Nicholas R, Coles A, Chataway J, Duddy M, Emsley H, Ford H, Fisniku L, Galea I, Harrower T, Hobart J, Huseyin H, Kipps CM, Marta M, McDonnell GV, McLean B, Pearson OR, Rog D, Schmierer K, Sharrack B, Straukiene A, Ford DV (2023) Patient-reported outcomes in multiple sclerosis: a prospective registry cohort study. Brain Commun. 10.1093/braincomms/fcad199 PubMed DOI PMC
Strober LB, Binder A, Nikelshpur OM, Chiaravalloti N, DeLuca J (2016) The perceived deficits questionnaire. Int J MS Care 18:183–190. 10.7224/1537-2073.2015-028 PubMed DOI PMC
Strober L, Callanan R (2021) Unemployment in multiple sclerosis across the ages: how factors of unemployment differ among the decades of life. J Health Psychol 26:1353–1363. 10.1177/1359105319876340 PubMed DOI
Schultheis MT, Weisser V, Ang J, Elovic E, Nead R, Sestito N, Fleksher C, Millis SR (2010) Examining the relationship between cognition and driving performance in multiple sclerosis. Arch Phys Med Rehabil 91:465–473. 10.1016/j.apmr.2009.09.026 PubMed DOI
Goverover Y, Genova H, Hillary F, DeLuca J (2007) The relationship between neuropsychological measures and the timed instrumental activities of daily living task in multiple sclerosis. Mult Scler J 13:636–644. 10.1177/1352458506072984 PubMed DOI
Chen MH, Goverover Y, Genova HM, DeLuca J (2020) Cognitive efficacy of pharmacologic treatments in multiple sclerosis: a systematic review. CNS Drugs 34:599–628. 10.1007/s40263-020-00734-4 PubMed DOI PMC
Li G, You Q, Hou X, Zhang S, Du L, Lv Y, Yu L (2023) The effect of exercise on cognitive function in people with multiple sclerosis: a systematic review and meta-analysis of randomized controlled trials. J Neurol 270:2908–2923. 10.1007/s00415-023-11649-7 PubMed DOI
Sandroff BM, Motl RW, Scudder MR, DeLuca J (2016) Systematic, evidence-based review of exercise, physical activity, and physical fitness effects on cognition in persons with multiple sclerosis. Neuropsychol Rev 26:271–294. 10.1007/s11065-016-9324-2 PubMed DOI
Motl RW, Sandroff BM (2022) Physical exercise in multiple sclerosis is not just a symptomatic therapy: it has a disease-modifying effect—yes. Mult Scler J 28:859–861. 10.1177/13524585211061651 PubMed DOI
DeLuca J, Chiaravalloti ND, Sandroff BM (2020) Treatment and management of cognitive dysfunction in patients with multiple sclerosis. Nat Rev Neurol 16:319–332. 10.1038/s41582-020-0355-1 PubMed DOI
Soler B, Ramari C, Valet M, Dalgas U, Feys P (2020) Clinical assessment, management, and rehabilitation of walking impairment in MS: an expert review. Expert Rev Neurother 20:875–886. 10.1080/14737175.2020.1801425 PubMed DOI
Sumowski JF, Chiaravalloti N, DeLuca J (2009) Cognitive reserve protects against cognitive dysfunction in multiple sclerosis. J Clin Exp Neuropsychol 31:913–926. 10.1080/13803390902740643 PubMed DOI
Sandroff BM, Wylie GR, Sutton BP, Johnson CL, DeLuca J, Motl RW (2018) Treadmill walking exercise training and brain function in multiple sclerosis: preliminary evidence setting the stage for a network-based approach to rehabilitation. Mult Scler J Exp Transl Clin. 10.1177/2055217318760641 PubMed DOI PMC
Sandroff BM, Hillman CH, Benedict RH, Motl RW (2015) Acute effects of walking, cycling, and yoga exercise on cognition in persons with relapsing-remitting multiple sclerosis without impaired cognitive processing speed. J Clin Exp Neuropsychol 37(2):209–219. 10.1080/13803395.2014.1001723 PubMed DOI
Stellmann J-P, Maarouf A, Schulz K-H, Baquet L, Pöttgen J, Patra S, Penner I-K, Gellißen S, Ketels G, Besson P, Ranjeva J-P, Guye M, Nolte G, Engel AK, Audoin B, Heesen C, Gold SM (2020) Aerobic exercise induces functional and structural reorganization of CNS networks in multiple sclerosis: a randomized controlled trial. Front Hum Neurosci. 10.3389/fnhum.2020.00255 PubMed DOI PMC
Guo LY, Lozinski B, Yong VW (2020) Exercise in multiple sclerosis and its models: Focus on the central nervous system outcomes. J neurosci res 98(3):509-523. 10.1002/jnr.24524 PubMed DOI
Motl RW, Sandroff BM, DeLuca J (2016) Exercise training and cognitive rehabilitation. Neurorehabil Neural Repair 30:499–511. 10.1177/1545968315606993 PubMed DOI
Feinstein A, Amato MP, Brichetto G, Chataway J, Chiaravalloti ND, Cutter G, Dalgas U, DeLuca J, Farrell R, Feys P, Filippi M, Freeman J, Inglese M, Meza C, Motl RW, Rocca MA, Sandroff BM, Salter A, Pietrusz A, Tacchino A, Smith A, Michelsen AS, Kristin A, Bichler B, Truax B, Vizzino C, Jones CD, Holme C, Smith C, Keytsman C, Pollio C, Cole C, Niccolai C, Cordani C, Colombo E, Pelosin E, Vanzeir E, Vannetti F, Gerli F, Maranta F, Riccitelli G, Pasquini G, Wilkinson H, Mosca I, Braisher J, Baird J, Podda J, Morecraft J, Lenaerts J, Puopolo J, Algie K, Kenton L, Toll L, Madsen LT, Knevels L, Lee L, Pedullà L, Cellerino M, Braisher M, Jørgensen M-LK, Pardini M, Sibilia M, Nabarro M, Diedmann MD, DiBenedetto M, Curran M, Koch M, D’Hooge M, Moore N, Weerdt ND, Preziosa P, Pajak P, Silic P, Walters RB, Finegan R, Veldkamp R, Hernandez R, Donnee R, Casagrande S, Lancia S, Bella SD, Vandecasteele S, Vandael V (2023) Cognitive rehabilitation and aerobic exercise for cognitive impairment in people with progressive multiple sclerosis (CogEx): a randomised, blinded, sham-controlled trial. Lancet Neurol 22:912–924. 10.1016/S1474-4422(23)00280-6 PubMed DOI
Galperin I, Mirelman A, Schmitz-Hübsch T, Hsieh KL, Regev K, Karni A, Brozgol M, Cornejo Thumm P, Lynch SG, Paul F, Devos H, Sosnoff J, Hausdorff JM (2023) Treadmill training with virtual reality to enhance gait and cognitive function among people with multiple sclerosis: a randomized controlled trial. J Neurol 270:1388–1401. 10.1007/s00415-022-11469-1 PubMed DOI PMC
Argento O, Piacentini C, Bossa M, Caltagirone C, Santamato A, Saraceni V, Nocentini U (2023) Motor, cognitive, and combined rehabilitation approaches on MS patients’ cognitive impairment. Neurol Sci 44:1109–1118. 10.1007/s10072-022-06552-4 PubMed DOI PMC
Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintoré M, Traboulsee AL, Trojano M, Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173. 10.1016/S1474-4422(17)30470-2 PubMed DOI
Lorscheider J, Buzzard K, Jokubaitis V, Spelman T, Havrdova E, Horakova D, Trojano M, Izquierdo G, Girard M, Duquette P, Prat A, Lugaresi A, Grand’Maison F, Grammond P, Hupperts R, Alroughani R, Sola P, Boz C, Pucci E, Lechner-Scott J, Bergamaschi R, Oreja-Guevara C, Iuliano G, Van Pesch V, Granella F, Ramo-Tello C, Spitaleri D, Petersen T, Slee M, Verheul F, Ampapa R, Amato MP, McCombe P, Vucic S, Sánchez Menoyo JL, Cristiano E, Barnett MH, Hodgkinson S, Olascoaga J, Saladino ML, Gray O, Shaw C, Moore F, Butzkueven H, Kalincik T, Group, on behalf of the Msb.S (2016) Defining secondary progressive multiple sclerosis. Brain 139:2395–2405. 10.1093/brain/aww173 PubMed DOI
Altieri M, Fratino M, Maestrini I, Dionisi C, Annecca R, Vicenzini E, Di Piero V (2020) Cognitive performance in relapsing-remitting multiple sclerosis: at risk or impaired? Dement Geriatr Cogn Disord 49:539–543. 10.1159/000514674 PubMed DOI
Scherer P, Baum K, Bauer H, Göhler H, Miltenburger C (2004) Normierung der brief repeatable battery of neuropsychological tests (BRB-N) für den deutschsprachigen Raum. Nervenarzt 75:984–990. 10.1007/s00115-004-1729-0 PubMed DOI
Sullivan, M. J., Edgley, K., & Dehoux, E. (1990). A survey of multiple sclerosis: I. Perceived cognitive problems and compensatory strategy use. Canadian Journal of Rehabilitation, 4(2), 99–105.
Filser, M., Schreiber, H., Pöttgen, J., Ullrich, S., Lang, M., & Penner, I. K. (2018). The Brief International Cognitive Assessment in Multiple Sclerosis (BICAMS): results from the German validation study. Journal of neurology, 265(11), 2587–2593. 10.1007/s00415-018-9034-1 PubMed
Langdon, D. W., Amato, M. P., Boringa, J., Brochet, B., Foley, F., Fredrikson, S., Hämäläinen, P., Hartung, H. P., Krupp, L., Penner, I. K., Reder, A. T., & Benedict, R. H. (2012). Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Multiple sclerosis (Houndmills, Basingstoke, England), 18(6), 891–898. PubMed PMC
Penner, I. K., Raselli, C., Stöcklin, M., Opwis, K., Kappos, L., & Calabrese, P. (2009). The Fatigue Scale for Motor and Cognitive Functions (FSMC): validation of a new instrument to assess multiple sclerosis-related fatigue. Multiple sclerosis (Houndmills, Basingstoke, England), 15(12), 1509–1517. 10.1177/1352458509348519 PubMed
Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta psychiatrica Scandinavica, 67(6), 361–370. 10.1111/j.1600-0447.1983.tb09716.x PubMed
Cohen S, Kamarck T, Mermelstein RA (1983) global measure of perceived stress. J health and social behavior 24(4):385–396. 10.2307/2136404 PubMed
Chesney, M. A., Neilands, T. B., Chambers, D. B., Taylor, J. M., & Folkman, S. (2006). A validity and reliability study of the coping self-efficacy scale. British journal of health psychology, 11(Pt 3), 421–437. 10.1348/135910705X53155 PubMed PMC
Tombaugh T. N. (2004). Trail Making Test A and B: normative data stratified by age and education. Archives of clinical neuropsychology : the official journal of the National Academy of Neuropsychologists, 19(2), 203–214. https://doi.org/10.1016/S0887-6177(03)00039-8 PubMed
Chelune, G.J., Bornstein, R.A., Prifitera, A. (1990). The Wechsler Memory Scale—Revised. In: Advances in Psychological Assessment. Advances in Psychological Assessment, vol 7. Springer, Boston, MA. 10.1007/978-1-4613-0555-2_3
Aschenbrenner, S., Tucha, O., & Lange, K. W. (2000). Regensburger wortflüssigkeits-test: RWT. Hogrefe, Verlag für Psychologie.
Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan Executive Function System (D–KEFS) [Database record]. APA PsycTests. 10.1037/t15082-000
Lehrl, S., Merz, J., Burkhard, G., & Fischer, S. (1999). Mehrfachwahl-wortschatz-intelligenztest. MWT-B, Erlangen: Straube
Langdon D, Amato M, Boringa J, Brochet B, Foley F, Fredrikson S, Hämäläinen P, Hartung H-P, Krupp L, Penner I, Reder A, Benedict R (2012) Recommendations for a brief international cognitive assessment for multiple sclerosis (BICAMS). Mult Scler J 18:891–898. 10.1177/1352458511431076 PubMed DOI PMC
Benedict RH, DeLuca J, Phillips G, LaRocca N, Hudson LD, Rudick R (2017) Validity of the symbol digit modalities test as a cognition performance outcome measure for multiple sclerosis. Mult Scler J 23:721–733. 10.1177/1352458517690821 PubMed DOI PMC
Strober L, DeLuca J, Benedict RH, Jacobs A, Cohen JA, Chiaravalloti N, Hudson LD, Rudick RA, LaRocca NG (2019) Symbol digit modalities test: a valid clinical trial endpoint for measuring cognition in multiple sclerosis. Mult Scler J 25:1781–1790. 10.1177/1352458518808204 PubMed DOI PMC
Baddeley A (2000) The episodic buffer: a new component of working memory? Trends Cogn Sci 4:417–423. 10.1016/S1364-6613(00)01538-2 PubMed DOI
Penner I-K, Kobel M, Stöcklin M et al (2007) BrainStim – Hirnstimulation als Präventions- und Therapiemaßnahme? NeuroGeriatrie 109:109–115
Hubacher M, Kappos L, Weier K, Stöcklin M, Opwis K, Penner I-K (2015) Case-based fMRI analysis after cognitive rehabilitation in MS: a novel approach. Front Neurol. 10.3389/fneur.2015.00078 PubMed DOI PMC
Hubacher M, DeLuca J, Weber P, Steinlin M, Kappos L, Opwis K, Penner I-K (2015) Cognitive rehabilitation of working memory in juvenile multiple sclerosis–effects on cognitive functioning, functional MRI and network related connectivity. Restor Neurol Neurosci 33:713–725. 10.3233/RNN-150497 PubMed DOI
Hubacher M, Weiland M, Calabrese P, Stoppe G, Stöcklin M, Fischer-Barnicol D, Opwis K, Penner I-K (2013) Working memory training in patients with chronic schizophrenia: a pilot study. Psychiatry J 2013:1–8. 10.1155/2013/154867 PubMed DOI PMC
Penner I-K, Vogt A, Stöcklin M, Gschwind L, Opwis K, Calabrese P (2012) Computerised working memory training in healthy adults: a comparison of two different training schedules. Neuropsychol Rehabil 22:716–733. 10.1080/09602011.2012.686883 PubMed DOI
Adamski N, Adler M, Opwis K, Penner I-K (2016) A pilot study on the benefit of cognitive rehabilitation in Parkinson’s disease. Ther Adv Neurol Disord 9:153–164. 10.1177/1756285616628765 PubMed DOI PMC
Denney DR, Hughes AJ, Elliott JK, Roth AK, Lynch SG (2015) Incidental learning during rapid information processing on the symbol-digit modalities test. Arch Clin Neuropsychol 30:322–328. 10.1093/arclin/acv019 PubMed DOI
Hancock LM, Bruce JM, Bruce AS, Lynch SG (2015) Processing speed and working memory training in multiple sclerosis: a double-blind randomized controlled pilot study. J Clin Exp Neuropsychol 37:113–127. 10.1080/13803395.2014.989818 PubMed DOI
Heine M, van de Port I, Rietberg MB, van Wegen EE, Kwakkel G (2015) Exercise therapy for fatigue in multiple sclerosis. Cochrane Database Syst Rev. 10.1002/14651858.CD009956.pub2 PubMed DOI PMC
Sandroff BM, Hillman CH, Benedict RHB, Motl RW (2016) Acute effects of varying intensities of treadmill walking exercise on inhibitory control in persons with multiple sclerosis: a pilot investigation. Physiol Behav 154:20–27. 10.1016/j.physbeh.2015.11.008 PubMed DOI
Weinstock Z, Morrow S, Conway D, Fuchs T, Wojcik C, Unverdi M, Zivadinov R, Weinstock-Guttman B, Iverson GL, Dwyer M, Benedict RH (2022) Interpreting change on the symbol digit modalities test in people with relapsing multiple sclerosis using the reliable change methodology. Mult Scler J 28:1101–1111. 10.1177/13524585211049397 PubMed DOI
Landmeyer NC, Bürkner P-C, Wiendl H, Ruck T, Hartung H-P, Holling H, Meuth SG, Johnen A (2020) Disease-modifying treatments and cognition in relapsing-remitting multiple sclerosis. Neurology. 10.1212/WNL.0000000000009522 PubMed DOI
De Giglio L, De Luca F, Gurreri F, Ferrante I, Prosperini L, Borriello G, Quartuccio E, Gasperini C, Pozzilli C (2019) Effect of dalfampridine on information processing speed impairment in multiple sclerosis. Neurology. 10.1212/WNL.0000000000007970 PubMed DOI
Farajnia S, Rajabi H, Ghaffari M, Beladi-Moghadam N, Fayazmilani R (2025) Impact of cognitive-aerobic exercise training on brain-derived neurotrophic factor, dual-tasking abilities, and mood state in individuals with multiple sclerosis. Physiol Behav 290:114756. 10.1016/j.physbeh.2024.114756 PubMed DOI
Tramontano M, Argento O, Manocchio N, Piacentini C, Orejel Bustos AS, De Angelis S, Bossa M, Nocentini U (2024) Dynamic cognitive–motor training versus cognitive computer-based training in people with multiple sclerosis: a preliminary randomized controlled trial with 2-month follow-up. J Clin Med 13:2664. 10.3390/jcm13092664 PubMed DOI PMC
Su X, Zheng Z, Yu F, Liu C, Wang S, Zhu F (2025) The impact of different exercise types on cognitive function in patients with multiple sclerosis: a systematic review and network meta-analysis. J Neurol 272:709. 10.1007/s00415-025-13465-7 PubMed DOI
Coghe G, Corona F, Marongiu E, Fenu G, Frau J, Lorefice L, Crisafulli A, Galli M, Concu A, Marrosu MG, Pau M, Cocco E (2018) Fatigue, as measured using the modified fatigue impact scale, is a predictor of processing speed improvement induced by exercise in patients with multiple sclerosis: data from a randomized controlled trial. J Neurol 265:1328–1333. 10.1007/s00415-018-8836-5 PubMed DOI
Rademacher A, Joisten N, Proschinger S, Hebchen J, Schlagheck ML, Bloch W, Gonzenbach R, Kool J, Bansi J, Zimmer P (2021) Do baseline cognitive status, participant specific characteristics and EDSS impact changes of cognitive performance following aerobic exercise intervention in multiple sclerosis? Mult Scler Relat Disord 51:102905. 10.1016/j.msard.2021.102905 PubMed DOI
Achiron A, Chapman J, Magalashvili D, Dolev M, Lavie M, Bercovich E, Polliack M, Doniger GM, Stern Y, Khilkevich O, Menascu S, Hararai G, Gurevich M, Barak Y (2013) Modeling of cognitive impairment by disease duration in multiple sclerosis: a cross-sectional study. PLoS ONE 8:e71058. 10.1371/journal.pone.0071058 PubMed DOI PMC
Schoonheim MM, Geurts JJG, Barkhof F (2010) The limits of functional reorganization in multiple sclerosis. Neurology 74:1246–1247. 10.1212/WNL.0b013e3181db9957 PubMed DOI
Cifelli A, Matthews PM (2002) Cerebral plasticity in multiple sclerosis: insights from fmri. Mult Scler J 8:193–199. 10.1191/1352458502ms820oa PubMed DOI
Giovannoni G, Butzkueven H, Dhib-Jalbut S, Hobart J, Kobelt G, Pepper G, Sormani MP, Thalheim C, Traboulsee A, Vollmer T (2016) Brain health: time matters in multiple sclerosis. Mult Scler Relat Disord 9:S5–S48. 10.1016/j.msard.2016.07.003 PubMed DOI
Brochet B, Ruet A (2019) Cognitive impairment in multiple sclerosis with regards to disease duration and clinical phenotypes. Front Neurol. 10.3389/fneur.2019.00261 PubMed DOI PMC
Bansi J, Koliamitra C, Bloch W, Joisten N, Schenk A, Watson M, Kool J, Langdon D, Dalgas U, Kesselring J, Zimmer P (2018) Persons with secondary progressive and relapsing remitting multiple sclerosis reveal different responses of tryptophan metabolism to acute endurance exercise and training. J Neuroimmunol 314:101–105. 10.1016/j.jneuroim.2017.12.001 PubMed DOI
Stamoula E, Siafis S, Dardalas I, Ainatzoglou A, Matsas A, Athanasiadis T, Sardeli C, Stamoulas K, Papazisis G (2021) Antidepressants on multiple sclerosis: a review of in vitro and in vivo models. Front Immunol. 10.3389/fimmu.2021.677879 PubMed DOI PMC
Margoni M, Preziosa P, Rocca MA, Filippi M (2023) Depressive symptoms, anxiety and cognitive impairment: emerging evidence in multiple sclerosis. Transl Psychiatry 13:264. 10.1038/s41398-023-02555-7 PubMed DOI PMC
Dardiotis E, Nousia A, Siokas V, Tsouris Z, Andravizou A, Mentis A-FA, Florou D, Messinis L, Nasios G (2018) Efficacy of computer-based cognitive training in neuropsychological performance of patients with multiple sclerosis: a systematic review and meta-analysis. Mult Scler Relat Disord 20:58–66. 10.1016/j.msard.2017.12.017 PubMed DOI
Dennett R, Madsen LT, Connolly L, Hosking J, Dalgas U, Freeman J (2020) Adherence and drop-out in randomized controlled trials of exercise interventions in people with multiple sclerosis: a systematic review and meta-analyses. Mult Scler Relat Disord 43:102169. 10.1016/j.msard.2020.102169 PubMed DOI
Youssef H, Gönül MN, Sobeeh MG, Akar K, Feys P, Cuypers K, Vural A (2024) Is high-intensity interval training more effective than moderate continuous training in rehabilitation of multiple sclerosis: a comprehensive systematic review and meta-analysis. Arch Phys Med Rehabil 105:1545–1558. 10.1016/j.apmr.2023.12.012 PubMed DOI