Glucuronidated Hydroxyphenylacetic and Hydroxyphenylpropanoic Acids as Standards for Bioavailability Studies with Flavonoids
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41552478
PubMed Central
PMC12809306
DOI
10.1021/acsomega.5c09380
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Glucuronidation is a major phase II biotransformation of (poly)-phenols leading to potentially bioactive metabolites. Due to the limited availability of authentic standards, in this work, we have focused on the glucuronidation of a series of mono- and dihydroxyphenolic acids. Their reactivity with two glucuronidation reagents, 2,3,4-triaceto-1-bromo-α-d-glucuronic acid methyl ester and Schmidt imidate, was investigated. The use of Schmidt imidate led to the successful synthesis of six target glucuronides in moderate to excellent yields. Subsequent deprotection of these compounds afforded the final glucuronides of 2-hydroxyphenylacetic, 3-hydroxyphenylacetic, 4-hydroxyphenylacetic, 3,4-dihydroxyphenylacetic, 3-(4-hydroxyphenyl)-propionic, and 3-(3,4-dihydroxyphenyl)-propionic acid. These compounds, which are plausible polyphenolic metabolites, were fully characterized and used in a pilot metabolic study in rats after administration of a hawthorn berry extract (475 mg/kg). UHPLC-HRMS analysis identified two of the glucuronides, namely 4-hydroxyphenylacetic acid glucuronide and 3-hydroxyphenylacetic acid glucuronide in rat plasma, confirming their in vivo formation.
Zobrazit více v PubMed
Gutiérrez-Díaz I., Fernández-Navarro T., Salazar N., Bartolomé B., Moreno-Arribas M. V., López P., Suárez A., de Los Reyes-Gavilán C. G., Gueimonde M., González S.. Could fecal phenylacetic and phenylpropionic acids be used as indicators of health status? J. Agric. Food Chem. 2018;66:10438–10446. doi: 10.1021/acs.jafc.8b04102. PubMed DOI
Kumar N., Goel N.. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019;24:e00370. doi: 10.1016/j.btre.2019.e00370. PubMed DOI PMC
Robbins R. J.. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003;51:2866–2887. doi: 10.1021/jf026182t. PubMed DOI
Williamson G., Clifford M. N.. Colonic metabolites of berry polyphenols: The missing link to biological activity? Br. J. Nutr. 2010;104:S48–S66. doi: 10.1017/S0007114510003946. PubMed DOI
Carecho R., Carregosa D., Dos Santos C. N.. Low molecular weight (poly)phenol metabolites across the blood-brain barrier: The underexplored journey. Brain Plast. 2020;6:193–214. doi: 10.3233/BPL-200099. PubMed DOI PMC
Kolaříková V., Brodsky K., Petrásková L., Pelantová H., Cvačka J., Havlíček L., Křen V., Valentová K.. Sulfation of phenolic acids: Chemoenzymatic vs. chemical synthesis. Int. J. Mol. Sci. 2022;23:15171. doi: 10.3390/ijms232315171. PubMed DOI PMC
Yang G., Ge S., Singh R., Basu S., Shatzer K., Zen M., Liu J., Tu Y., Zhang C., Wei J., Shi J., Zhu L., Liu Z., Wang Y., Gao S., Hu M.. Glucuronidation: Driving factors and their impact on glucuronide disposition. Drug Metab. Rev. 2017;49:105–138. doi: 10.1080/03602532.2017.1293682. PubMed DOI PMC
Rowland A., Miners J. O., Mackenzie P. I.. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol. 2013;45:1121–1132. doi: 10.1016/j.biocel.2013.02.019. PubMed DOI
Ohnuki T., Ejiri M., Kizuka M., Fujiwara M., Nishi T.. Practical one-step glucuronidation via biotransformation. Bioorg. Med. Chem. Lett. 2019;29:199–203. doi: 10.1016/j.bmcl.2018.11.056. PubMed DOI
Walther R., Jarlstad Olesen M. T., Zelikin A. N.. Extended scaffold glucuronides: En route to the universal synthesis of O-aryl glucuronide prodrugs. Org. Biomol. Chem. 2019;17:6970–6974. doi: 10.1039/C9OB01384A. PubMed DOI
Florent J.-C., Dong X., Gaudel G., Mitaku S., Monneret C., Gesson J.-P., Jacquesy J.-C., Mondon M., Renoux B., Andrianomenjanahary S., Michel S., Koch M., Tillequin F., Gerken M., Czech J., Straub R., Bosslet K.. Prodrugs of anthracyclines for use in antibody-directed enzyme prodrug therapy. J. Med. Chem. 1998;41:3572–3581. doi: 10.1021/jm970589l. PubMed DOI
Cruz L., Basílio N., Mateus N., Pina F., de Freitas V.. Characterization of kinetic and thermodynamic parameters of cyanidin-3-glucoside methyl and glucuronyl metabolite conjugates. J. Phys. Chem. B. 2015;119:2010–2018. doi: 10.1021/jp511537e. PubMed DOI
Wang, Z. Zemplén Deacetylation. In Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons, Inc., 2010; pp 3123–3128.
Fischer B., Nudelman A., Ruse M., Herzig J., Gottlieb H. E., Keinan E.. A novel method for stereoselective glucuronidation. J. Org. Chem. 1984;49:4988–4993. doi: 10.1021/jo00199a046. DOI
Hayes J. A., Eccles K. S., Lawrence S. E., Moynihan H. A.. Preparation and characterisation of solid state forms of paracetamol-O-glucuronide. Carbohydr. Res. 2012;349:108–112. doi: 10.1016/j.carres.2011.12.018. PubMed DOI
London J. A., Wang E. C. S., Barsukov I. L., Yates E. A., Stachulski A. V.. Synthesis and toxicity profile in 293 human embryonic kidney cells of the β D-glucuronide derivatives of ortho-, meta- and para-cresol. Carbohydr. Res. 2021;499:108225. doi: 10.1016/j.carres.2020.108225. PubMed DOI
Gómez-Juaristi M., Martínez-López S., Sarria B., Bravo L., Mateos R.. Bioavailability of hydroxycinnamates in an instant green/roasted coffee blend in humans. Identification of novel colonic metabolites. Food Funct. 2018;9:331–343. doi: 10.1039/C7FO01553D. PubMed DOI
Bresciani L., Martini D., Mena P., Tassotti M., Calani L., Brigati G., Brighenti F., Holasek S., Malliga D.-E., Lamprecht M., Del Rio D.. Absorption profile of (poly)phenolic compounds after consumption of three food supplements containing 36 different fruits, vegetables, and berries. Nutrients. 2017;9:194. doi: 10.3390/nu9030194. PubMed DOI PMC
Tabaszewska M., Najgebauer-Lejko D., Zbylut-Górska M., Skoczylas Ł., Tokarczyk G.. Effect of hawthorn berry pre-treatment and preservation methods on the extractability of color-determining compounds and selected antioxidative substances. LWT. 2023;173:114297. doi: 10.1016/j.lwt.2022.114297. DOI
Zheng Y., Zhao Y., Tao S., Li X., Cheng X., Jiang G., Wan X.. Green esterification of carboxylic acids promoted by tert-butyl nitrite. Eur. J. Org Chem. 2021;2021:2713–2718. doi: 10.1002/ejoc.202100326. DOI
Valero M., Becker D., Jess K., Weck R., Atzrodt J., Bannenberg T., Derdau V., Tamm M.. Directed iridium-catalyzed hydrogen isotope exchange reactions of phenylacetic acid esters and amides. Chem.Eur. J. 2019;25:6517–6522. doi: 10.1002/chem.201901449. PubMed DOI
Poǹkina D., Kuranov S., Khvostov M., Zhukova N., Meshkova Y., Marenina M., Luzina O., Tolstikova T., Salakhutdinov N.. Hepatoprotective effect of a new FFAR1 agonistN-alkylated isobornylamine. Molecules. 2023;28:396. doi: 10.3390/molecules28010396. PubMed DOI PMC
Geiseler B., Fruk L.. Bifunctional catechol based linkers for modification of TiO2 surfaces. J. Mater. Chem. 2012;22:735–741. doi: 10.1039/C1JM12863A. DOI
Bourne G. T., Golding S. W., McGeary R. P., Meutermans W. D. F., Jones A., Marshall G. R., Alewood P. F., Smythe M. L.. The development and application of a novel safety-catch linker for BOC-based assembly of libraries of cyclic peptides. J. Org. Chem. 2001;66:7706–7713. doi: 10.1021/jo010580y. PubMed DOI
Chen Y., Li Y., Yu H., Sugiarto G., Thon V., Hwang J., Ding L., Hie L., Chen X.. Tailored design and synthesis of heparan sulfate oligosaccharide analogues using sequential one-pot multienzyme systems. Angew. Chem., Int. Ed. 2013;52:11852–11856. doi: 10.1002/anie.201305667. PubMed DOI PMC
T Brown R., Scheinmann F., V Stachulski A.. Intermediates for glucuronide synthesis: 7-Hydroxycoumarin glucuronide. J. Chem. Res. 1997:370–371. doi: 10.1039/A703397B. DOI
Soliman S. E., Bassily R. W., El-Sokkary R. I., Nashed M. A.. Acetylated methyl glucopyranuronate trichloroacetimidate as a glycosyl donor for efficient synthesis of disaccharides. Carbohydr. Res. 2003;338:2337–2340. doi: 10.1016/S0008-6215(03)00317-3. PubMed DOI
Hajji C., Roller S., Beigi M., Liese A., Haag R.. Polyglycerol-supported chromium-salen as a high-loading dendritic catalyst for stereoselective Diels–Alder reactions. Adv. Synth. Catal. 2006;348:1760–1771. doi: 10.1002/adsc.200606168. DOI
Cao, H. ; Chen, X. ; Jassbi, A. R. ; Xiao, J. . Microbial biotransformation of bioactive flavonoids. 2015, 33, 214–223. doi: 10.1016/j.biotechadv.2014.10.012. PubMed DOI
Jones A. E., Wilson H. K., Meath P., Meng X., Holt D. W., Johnston A., Oellerich M., Armstrong V. W., Stachulski A. V.. Convenient syntheses of the in vivo carbohydrate metabolites of mycophenolic acid: reactivity of the acyl glucuronide. Tetrahedron Lett. 2009;50:4973–4977. doi: 10.1016/j.tetlet.2009.06.060. DOI
Nasseri S. A., Betschart L., Opaleva D., Rahfeld P., Withers S. G.. A mechanism-based approach to screening metagenomic libraries for discovery of unconventional glycosidases. Angew. Chem., Int. Ed. 2018;57:11359–11364. doi: 10.1002/anie.201806792. PubMed DOI
Du K., Cao X., Zhang P., Zheng H.. Synthesis and anti-tumor activity of glycosyl oxadiazoles derivatives. Bioorg. Med. Chem. Lett. 2014;24:5318–5320. doi: 10.1016/j.bmcl.2014.09.042. PubMed DOI
Carrière D., Meunier S. J., Tropper F. D., Cao S., Roy R.. Phase transfer catalysis toward the synthesis of O-, S-, Se- and C-glycosides. J. Mol. Catal. A: Chem. 2000;154:9–22. doi: 10.1016/S1381-1169(99)00358-1. DOI
Zhang Q., Raheem K. S., Botting N. P., Slawin A. M. Z., Kay C. D., O’Hagan D.. Flavonoid metabolism: The synthesis of phenolic glucuronides and sulfates as candidate metabolites for bioactivity studies of dietary flavonoids. Tetrahedron. 2012;68:4194–4201. doi: 10.1016/j.tet.2012.03.100. DOI
Stachulski A. V., Meng X.. Glucuronides from metabolites to medicines: a survey of the in vivo generation, chemical synthesis and properties of glucuronides. Nat. Prod. Rep. 2013;30:806–848. doi: 10.1039/c3np70003h. PubMed DOI