Glucuronidated Hydroxyphenylacetic and Hydroxyphenylpropanoic Acids as Standards for Bioavailability Studies with Flavonoids

. 2026 Jan 13 ; 11 (1) : 1620-1629. [epub] 20251225

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41552478

Glucuronidation is a major phase II biotransformation of (poly)-phenols leading to potentially bioactive metabolites. Due to the limited availability of authentic standards, in this work, we have focused on the glucuronidation of a series of mono- and dihydroxyphenolic acids. Their reactivity with two glucuronidation reagents, 2,3,4-triaceto-1-bromo-α-d-glucuronic acid methyl ester and Schmidt imidate, was investigated. The use of Schmidt imidate led to the successful synthesis of six target glucuronides in moderate to excellent yields. Subsequent deprotection of these compounds afforded the final glucuronides of 2-hydroxyphenylacetic, 3-hydroxyphenylacetic, 4-hydroxyphenylacetic, 3,4-dihydroxyphenylacetic, 3-(4-hydroxyphenyl)-propionic, and 3-(3,4-dihydroxyphenyl)-propionic acid. These compounds, which are plausible polyphenolic metabolites, were fully characterized and used in a pilot metabolic study in rats after administration of a hawthorn berry extract (475 mg/kg). UHPLC-HRMS analysis identified two of the glucuronides, namely 4-hydroxyphenylacetic acid glucuronide and 3-hydroxyphenylacetic acid glucuronide in rat plasma, confirming their in vivo formation.

Zobrazit více v PubMed

Gutiérrez-Díaz I., Fernández-Navarro T., Salazar N., Bartolomé B., Moreno-Arribas M. V., López P., Suárez A., de Los Reyes-Gavilán C. G., Gueimonde M., González S.. Could fecal phenylacetic and phenylpropionic acids be used as indicators of health status? J. Agric. Food Chem. 2018;66:10438–10446. doi: 10.1021/acs.jafc.8b04102. PubMed DOI

Kumar N., Goel N.. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019;24:e00370. doi: 10.1016/j.btre.2019.e00370. PubMed DOI PMC

Robbins R. J.. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003;51:2866–2887. doi: 10.1021/jf026182t. PubMed DOI

Williamson G., Clifford M. N.. Colonic metabolites of berry polyphenols: The missing link to biological activity? Br. J. Nutr. 2010;104:S48–S66. doi: 10.1017/S0007114510003946. PubMed DOI

Carecho R., Carregosa D., Dos Santos C. N.. Low molecular weight (poly)­phenol metabolites across the blood-brain barrier: The underexplored journey. Brain Plast. 2020;6:193–214. doi: 10.3233/BPL-200099. PubMed DOI PMC

Kolaříková V., Brodsky K., Petrásková L., Pelantová H., Cvačka J., Havlíček L., Křen V., Valentová K.. Sulfation of phenolic acids: Chemoenzymatic vs. chemical synthesis. Int. J. Mol. Sci. 2022;23:15171. doi: 10.3390/ijms232315171. PubMed DOI PMC

Yang G., Ge S., Singh R., Basu S., Shatzer K., Zen M., Liu J., Tu Y., Zhang C., Wei J., Shi J., Zhu L., Liu Z., Wang Y., Gao S., Hu M.. Glucuronidation: Driving factors and their impact on glucuronide disposition. Drug Metab. Rev. 2017;49:105–138. doi: 10.1080/03602532.2017.1293682. PubMed DOI PMC

Rowland A., Miners J. O., Mackenzie P. I.. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol. 2013;45:1121–1132. doi: 10.1016/j.biocel.2013.02.019. PubMed DOI

Ohnuki T., Ejiri M., Kizuka M., Fujiwara M., Nishi T.. Practical one-step glucuronidation via biotransformation. Bioorg. Med. Chem. Lett. 2019;29:199–203. doi: 10.1016/j.bmcl.2018.11.056. PubMed DOI

Walther R., Jarlstad Olesen M. T., Zelikin A. N.. Extended scaffold glucuronides: En route to the universal synthesis of O-aryl glucuronide prodrugs. Org. Biomol. Chem. 2019;17:6970–6974. doi: 10.1039/C9OB01384A. PubMed DOI

Florent J.-C., Dong X., Gaudel G., Mitaku S., Monneret C., Gesson J.-P., Jacquesy J.-C., Mondon M., Renoux B., Andrianomenjanahary S., Michel S., Koch M., Tillequin F., Gerken M., Czech J., Straub R., Bosslet K.. Prodrugs of anthracyclines for use in antibody-directed enzyme prodrug therapy. J. Med. Chem. 1998;41:3572–3581. doi: 10.1021/jm970589l. PubMed DOI

Cruz L., Basílio N., Mateus N., Pina F., de Freitas V.. Characterization of kinetic and thermodynamic parameters of cyanidin-3-glucoside methyl and glucuronyl metabolite conjugates. J. Phys. Chem. B. 2015;119:2010–2018. doi: 10.1021/jp511537e. PubMed DOI

Wang, Z. Zemplén Deacetylation. In Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons, Inc., 2010; pp 3123–3128.

Fischer B., Nudelman A., Ruse M., Herzig J., Gottlieb H. E., Keinan E.. A novel method for stereoselective glucuronidation. J. Org. Chem. 1984;49:4988–4993. doi: 10.1021/jo00199a046. DOI

Hayes J. A., Eccles K. S., Lawrence S. E., Moynihan H. A.. Preparation and characterisation of solid state forms of paracetamol-O-glucuronide. Carbohydr. Res. 2012;349:108–112. doi: 10.1016/j.carres.2011.12.018. PubMed DOI

London J. A., Wang E. C. S., Barsukov I. L., Yates E. A., Stachulski A. V.. Synthesis and toxicity profile in 293 human embryonic kidney cells of the β D-glucuronide derivatives of ortho-, meta- and para-cresol. Carbohydr. Res. 2021;499:108225. doi: 10.1016/j.carres.2020.108225. PubMed DOI

Gómez-Juaristi M., Martínez-López S., Sarria B., Bravo L., Mateos R.. Bioavailability of hydroxycinnamates in an instant green/roasted coffee blend in humans. Identification of novel colonic metabolites. Food Funct. 2018;9:331–343. doi: 10.1039/C7FO01553D. PubMed DOI

Bresciani L., Martini D., Mena P., Tassotti M., Calani L., Brigati G., Brighenti F., Holasek S., Malliga D.-E., Lamprecht M., Del Rio D.. Absorption profile of (poly)­phenolic compounds after consumption of three food supplements containing 36 different fruits, vegetables, and berries. Nutrients. 2017;9:194. doi: 10.3390/nu9030194. PubMed DOI PMC

Tabaszewska M., Najgebauer-Lejko D., Zbylut-Górska M., Skoczylas Ł., Tokarczyk G.. Effect of hawthorn berry pre-treatment and preservation methods on the extractability of color-determining compounds and selected antioxidative substances. LWT. 2023;173:114297. doi: 10.1016/j.lwt.2022.114297. DOI

Zheng Y., Zhao Y., Tao S., Li X., Cheng X., Jiang G., Wan X.. Green esterification of carboxylic acids promoted by tert-butyl nitrite. Eur. J. Org Chem. 2021;2021:2713–2718. doi: 10.1002/ejoc.202100326. DOI

Valero M., Becker D., Jess K., Weck R., Atzrodt J., Bannenberg T., Derdau V., Tamm M.. Directed iridium-catalyzed hydrogen isotope exchange reactions of phenylacetic acid esters and amides. Chem.Eur. J. 2019;25:6517–6522. doi: 10.1002/chem.201901449. PubMed DOI

Poǹkina D., Kuranov S., Khvostov M., Zhukova N., Meshkova Y., Marenina M., Luzina O., Tolstikova T., Salakhutdinov N.. Hepatoprotective effect of a new FFAR1 agonistN-alkylated isobornylamine. Molecules. 2023;28:396. doi: 10.3390/molecules28010396. PubMed DOI PMC

Geiseler B., Fruk L.. Bifunctional catechol based linkers for modification of TiO2 surfaces. J. Mater. Chem. 2012;22:735–741. doi: 10.1039/C1JM12863A. DOI

Bourne G. T., Golding S. W., McGeary R. P., Meutermans W. D. F., Jones A., Marshall G. R., Alewood P. F., Smythe M. L.. The development and application of a novel safety-catch linker for BOC-based assembly of libraries of cyclic peptides. J. Org. Chem. 2001;66:7706–7713. doi: 10.1021/jo010580y. PubMed DOI

Chen Y., Li Y., Yu H., Sugiarto G., Thon V., Hwang J., Ding L., Hie L., Chen X.. Tailored design and synthesis of heparan sulfate oligosaccharide analogues using sequential one-pot multienzyme systems. Angew. Chem., Int. Ed. 2013;52:11852–11856. doi: 10.1002/anie.201305667. PubMed DOI PMC

T Brown R., Scheinmann F., V Stachulski A.. Intermediates for glucuronide synthesis: 7-Hydroxycoumarin glucuronide. J. Chem. Res. 1997:370–371. doi: 10.1039/A703397B. DOI

Soliman S. E., Bassily R. W., El-Sokkary R. I., Nashed M. A.. Acetylated methyl glucopyranuronate trichloroacetimidate as a glycosyl donor for efficient synthesis of disaccharides. Carbohydr. Res. 2003;338:2337–2340. doi: 10.1016/S0008-6215(03)00317-3. PubMed DOI

Hajji C., Roller S., Beigi M., Liese A., Haag R.. Polyglycerol-supported chromium-salen as a high-loading dendritic catalyst for stereoselective Diels–Alder reactions. Adv. Synth. Catal. 2006;348:1760–1771. doi: 10.1002/adsc.200606168. DOI

Cao, H. ; Chen, X. ; Jassbi, A. R. ; Xiao, J. . Microbial biotransformation of bioactive flavonoids. 2015, 33, 214–223. doi: 10.1016/j.biotechadv.2014.10.012. PubMed DOI

Jones A. E., Wilson H. K., Meath P., Meng X., Holt D. W., Johnston A., Oellerich M., Armstrong V. W., Stachulski A. V.. Convenient syntheses of the in vivo carbohydrate metabolites of mycophenolic acid: reactivity of the acyl glucuronide. Tetrahedron Lett. 2009;50:4973–4977. doi: 10.1016/j.tetlet.2009.06.060. DOI

Nasseri S. A., Betschart L., Opaleva D., Rahfeld P., Withers S. G.. A mechanism-based approach to screening metagenomic libraries for discovery of unconventional glycosidases. Angew. Chem., Int. Ed. 2018;57:11359–11364. doi: 10.1002/anie.201806792. PubMed DOI

Du K., Cao X., Zhang P., Zheng H.. Synthesis and anti-tumor activity of glycosyl oxadiazoles derivatives. Bioorg. Med. Chem. Lett. 2014;24:5318–5320. doi: 10.1016/j.bmcl.2014.09.042. PubMed DOI

Carrière D., Meunier S. J., Tropper F. D., Cao S., Roy R.. Phase transfer catalysis toward the synthesis of O-, S-, Se- and C-glycosides. J. Mol. Catal. A: Chem. 2000;154:9–22. doi: 10.1016/S1381-1169(99)00358-1. DOI

Zhang Q., Raheem K. S., Botting N. P., Slawin A. M. Z., Kay C. D., O’Hagan D.. Flavonoid metabolism: The synthesis of phenolic glucuronides and sulfates as candidate metabolites for bioactivity studies of dietary flavonoids. Tetrahedron. 2012;68:4194–4201. doi: 10.1016/j.tet.2012.03.100. DOI

Stachulski A. V., Meng X.. Glucuronides from metabolites to medicines: a survey of the in vivo generation, chemical synthesis and properties of glucuronides. Nat. Prod. Rep. 2013;30:806–848. doi: 10.1039/c3np70003h. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...