Raman Spectroscopy for Testing Wood Pellets
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MEYS CZE (LM2023050 Czech-Bioimaging)
MEYES CZE
AV21 (Sustainable Energy)
Czech Academy of Sciences
PubMed
41562981
PubMed Central
PMC12821414
DOI
10.3390/mps9010003
PII: mps9010003
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, biomass, cellulose, chemical composition, forestry residues, lignin, portable Raman, quality control, rapid analysis, wood pellets,
- Publikační typ
- časopisecké články MeSH
The creation of bioenergy based on the biomass wood pellet industry, which accounts for the majority of the global biomass supply, is one of the most common and important ways to utilize waste wood, wood dust, and other byproducts of wood manufacturing, known as forestry residues. Pellet production processes might greatly benefit from fast monitoring systems that may allow for at least a semi-quantitative measurement of crucial parameters such as lignin and cellulose. The determination of lignin and cellulose is complicated and time-consuming because it usually requires time-demanding and labor-intensive sample preparation. This, however, might be a crucial problem. In this context, the application of Raman spectroscopic techniques is considered a promising approach, as it enables rapid, reliable, and label-free analysis of wood pellets, providing information about the chemical composition of the biomass, specifically lignin and cellulose. The purpose of this article is to report on the application of Raman spectroscopy exemplified by the detection of the lignin/cellulose ratio. In our methodological approach, we integrated the area under the selected Raman bands to avoid a large scatter of data when only the intensities of the bands were used. Moreover, the acquired Raman spectra displayed very strong signals from both substances, which contributes to the feasibility of the analysis even with a portable instrument. This study is expected to be of assistance in situations when the monitoring of the chemical changes and the quick inspection of pellets are required in near real time, online, and in situ.
Zobrazit více v PubMed
Gierlinger N., Schwanninger M. The potential of Raman microscopy and Raman imaging in plant research. Spectroscopy. 2007;21:69–89. doi: 10.1155/2007/498206. DOI
Gierlinger N., Keplinger T., Harrington M. Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 2012;7:1694–1708. doi: 10.1038/nprot.2012.092. PubMed DOI
Gierlinger N., Keplinger T., Harrington M., Schwanninger M. Raman imaging of lignocellulosic feedstock. In: van de Ven T., Kadla J., editors. Cellulose Biomass Conversion 3. INTECH; Rijeka, Croatia: 2013. p. 159.
Gierlinger N. Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA) Front. Plant Sci. 2014;5:306. doi: 10.3389/fpls.2014.00306. PubMed DOI PMC
Schulz H., Baranska M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007;43:13–25. doi: 10.1016/j.vibspec.2006.06.001. DOI
Vítek P., Novotná K., Hodaňová P., Rapantová B., Klem K. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Spectrochim. Acta A. 2017;170:234–241. doi: 10.1016/j.saa.2016.07.025. PubMed DOI
Kaczor A., Pilarczyk M. Structural and spatial analysis of carotenoids in a single cell monitored by Raman spectroscopy. In: Baranska M., editor. Optical Spectroscopy and Computational Methods in Biology and Medicine. Springer; Dordrecht, The Netherlands: 2014. p. 309.
Prats-Mateu B., Stefke B., Hauser M.-T., Gierlinger N. Elucidating structural and compositional changes in plant tissues and single cells by Raman spectroscopic imaging. Res. Gate. 2014;26:11–14.
Agarwal U.P., Ralph S.A. FT-Raman spectroscopy of wood: Identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana) Appl. Spectrosc. 1997;51:1648–1655. doi: 10.1366/0003702971939316. DOI
Schie I.W., Huser T. Methods and applications of Raman microspectroscopy tosingle-cell analysis. Appl. Spectrosc. 2013;67:813–828. doi: 10.1366/12-06971. PubMed DOI
Notingher I. Raman spectroscopy cell-based biosensors. Sensors. 2007;7:1343–1358. doi: 10.3390/s7081343. DOI
Prochazka D., Mazura M., Samek O., Rebrošová K., Pořízka P., Klus J., Prochazková P., Novotný J., Novotný K., Kaiser J. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria. Spectrochim. Acta B. 2018;139:6–12. doi: 10.1016/j.sab.2017.11.004. DOI
Almarashi J.F.M., Kapel N., Wilkinson T.S., Telle H.H. Raman spectroscopy of bacterial species and strains cultivated under reproducible conditions. J. Spectrosc. 2012;27:361–365. doi: 10.1155/2012/540490. DOI
De Gelder J., De Gussem K., Vandenabeele P., Moens L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007;38:1133–1147. doi: 10.1002/jrs.1734. DOI
Brauchle E., Schenke-Layland K. Raman spectroscopy in biomedicine—Noninvasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol. J. 2012;8:288–297. doi: 10.1002/biot.201200163. PubMed DOI PMC
Li-Chan E. The applications of Raman spectroscopy in food science. Trends Food Sci. Technol. 1996;7:361–370. doi: 10.1016/S0924-2244(96)10037-6. DOI
Samek O., Jonáš A., Pilát Z., Zemánek P., Nedbal L., Tříska J., Kotas P., Trtílek M. Raman microspectroscopy of individual algal cells: Sensing unsaturation of storage lipids in vivo. Sensors. 2010;10:8635–8651. doi: 10.3390/s100908635. PubMed DOI PMC
Jones R.R., Hooper D.C., Zhang L., Wolverson D., Valev V.K. Raman techniques: Fundamentals and frontiers. Nanoscale Res. Lett. 2019;14:231. doi: 10.1186/s11671-019-3039-2. PubMed DOI PMC
Orlando A., Franceschini F., Muscas C., Pidkova S., Bartoli M., Rovere M., Tagliaferro A. A Comprehensive review on Raman spectroscopy applications. Chemosensors. 2021;9:262. doi: 10.3390/chemosensors9090262. DOI
Miyafuji H., Komai K., Kanbayashi T. Development of quantification method for lignin content in woody biomass by Raman micro-spectroscopy. Vib. Spectrosc. 2017;88:9–13. doi: 10.1016/j.vibspec.2016.10.011. DOI
Lähdetie A. Doctoral Dissertation. Aalto University; Espoo, Finland: 2013. Wood Biomass Characterization by Raman Spectroscopy.
Toscano G., Maceratesi V., Leoni E., Stipa P., Laudadio E., Sabbatini S. FTIR spectroscopy for determination of the raw materials used in wood pellet production. Fuel. 2022;313:123017. doi: 10.1016/j.fuel.2021.123017. DOI
Jesus E., Franca T., Calvani C., Lacerda M., Gonçalves D., Oliveira S.L., Marangoni B., Cena C. Making wood inspection easier: FTIR spectroscopy and machine learning for Brazilian native commercial wood species identification. RSC Adv. 2024;14:7283–7289. doi: 10.1039/D4RA00174E. PubMed DOI PMC
Agarwal U.P., Reiner R.R., Ralph S.A. Estimation of Cellulose Crystallinity of Lignocelluloses Using Near-IR FT-Raman Spectroscopy and Comparison of the Raman and Segal-WAXS Methods. J. Agric. Food Chem. 2013;61:103−113. doi: 10.1021/jf304465k. PubMed DOI
Duca D., Pizzi A., Rossini G., Mengarelli C., Foppa Pedretti E., Mancini M. Prediction of Hardwood and Softwood Contents in Blends of Wood Powders Using Mid-Infrared Spectroscopy. Energy Fuels. 2016;30:3038–3044. doi: 10.1021/acs.energyfuels.5b02994. DOI
Gao W., Shu T., Liu Q., Ling S., Guan Y., Liu S., Zhou L. Predictive Modeling of Lignin Content for the Screening of Suitable Poplar Genotypes Based on Fourier Transform–Raman Spectrometry. ACS Omega. 2021;6:8578–8587. doi: 10.1021/acsomega.1c00400. PubMed DOI PMC
Remy N., Touboul D., Nicol E., Humbert S., Duma L., Lameiras P., Renault J.-H., Paës G. Chemical imaging of lignocellulosic biomass: Mapping plant chemistry. Biotechnol. Adv. 2025;85:108696. doi: 10.1016/j.biotechadv.2025.108696. PubMed DOI
Agarwal U.P. Analysis of cellulose and lignocellulose materials by Raman spectroscopy: A review of the current status. Molecules. 2019;24:1659. doi: 10.3390/molecules24091659. PubMed DOI PMC
Lupoi J.S., Gjersing E., Davis M.F. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy. Front. Bioeng. Biotechnol. 2015;3:50. doi: 10.3389/fbioe.2015.00050. PubMed DOI PMC
Leng W., He S., Lu B., Thirumalai R.V.K., Nayanathara R.O., Shi J., Zhang R., Zhang X. Raman imaging: An indispensable technique to comprehend the functionalization of lignocellulosic material. Int. J. Biol. Macromol. 2022;220:159–174. doi: 10.1016/j.ijbiomac.2022.08.084. PubMed DOI
Sharma A., Garg S., Sharma V. ATR-FTIR Spectroscopy and Machine Learning for Sustainable Wood Sourcing and Species Identification: Applications to Wood Forensics. Microchem. J. 2024;200:110467. doi: 10.1016/j.microc.2024.110467. DOI
Ralph J., Hatfield R.D., Sederoff R.R., MacKay J.J. Order and randomness in lignin and lignification: Is a new paradigm for lignification required? Research Summaries USDFRC. 1998:39–41.
Malavasi U.C., Davis A.S., Malavasi M.d.M. Lignin in woody plants under water stress: A review. Floresta Ambiente. 2016;23:589–597. doi: 10.1590/2179-8087.143715. DOI
Gerasimov V.A., Gurovich A.M., Kostrin D.K., Selivanov L.M., Simon V.A., Stuchenkov A.B., Paltcev A.V., Uhov A.A. Raman spectroscopy for identification of wood species. J. Phys. Conf. Ser. 2016;741:012131. doi: 10.1088/1742-6596/741/1/012131. DOI
Sakrabani R., Mosca S., Liptak A., Burca G. Feasibility study on using combined tomography and spectroscopy techniques to evaluate the physical and chemical characteristics of organo-mineral fertilisers. Front. Sustain. Food Syst. 2025;9:1570461. doi: 10.3389/fsufs.2025.1570461. DOI
Pinho R., Oliveira M., Teixeira B.M.M., da Silva Borges A.D. Evaluating quality and price dynamics of wood pellets in the Portuguese market: Impacts of geopolitical and economic factors. Energy Strategy Rev. 2025;59:101719. doi: 10.1016/j.esr.2025.101719. DOI
Siyal A.A., Liu Y., Mao X., Ali B., Husaain S., Dai J., Zhang T., Fu J., Liu G. Characterization and quality analysis of wood pellets: Effect of pelletization and torrefaction process variables on quality of pellets. Biomass Convers. Biorefinery. 2021;11:2201–2217. doi: 10.1007/s13399-020-01235-6. DOI
Kamperidou V. Quality Analysis of Commercially Available Wood Pellets and Correlations between Pellets Characteristics. Energies. 2022;15:2865. doi: 10.3390/en15082865. DOI
Demirbas A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004;30:219–230. doi: 10.1016/j.pecs.2003.10.004. DOI
da Silva S.B., Arantes M.D.C., de Andrade J.K.B., Andrade C.R., Carneiro A.d.C.O., Protásio T.d.P. Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil. Renew. Energy. 2020;147:1870–1879. doi: 10.1016/j.renene.2019.09.131. DOI
Picchio R., Latterini F., Venanzi R., Stefanoni W., Suardi A., Tocci D., Pari L. Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation. Energies. 2020;13:2937. doi: 10.3390/en13112937. DOI
Holub D., Pořízka P., Kizovský M., Prochazka D., Samek O., Kaiser J. The potential of combining laser-induced breakdown spectroscopy and Raman spectroscopy data for the analysis of wood samples. Spectrochim. Acta Part B At. Spectrosc. 2022;195:106487. doi: 10.1016/j.sab.2022.106487. DOI
Börcsök Z., Pásztory Z. The role of lignin in wood working processes using elevated temperatures: An abbreviated literature survey. Eur. J. Wood Wood Prod. 2021;79:511–526. doi: 10.1007/s00107-020-01637-3. DOI
Demirbas A. Relationships between Heating Value and Lignin, Moisture, Ash and Extractive Contents of Biomass Fuels. Energy Explor. Exploit. 2002;20:105–111. doi: 10.1260/014459802760170420. DOI
Demirbaş A. Relationships between lignin contents and heating values of biomass. Energy Convers. Manag. 2001;42:183–188. doi: 10.1016/S0196-8904(00)00050-9. DOI
Esteves B., Sen U., Pereira H. Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis. Energies. 2023;16:4226. doi: 10.3390/en16104226. DOI
Agarwal U.P. Raman imaging to investigate ultrastructure and composition of plant cell walls: Distribution of lignin and cellulose in black spruce wood (Picea mariana) Planta. 2006;224:1141–1153. doi: 10.1007/s00425-006-0295-z. PubMed DOI
Vitek P., Klem K., Urban O. Application of Raman spectroscopy to analyse lignin/cellulose ratio in tree rings. Beskydy. 2017;10:41–48. doi: 10.11118/beskyd201710010041. DOI
Rebrošová K., Šiler M., Samek O., Růžička F., Bernatová S., Ježek J., Zemánek P., Holá V. Differentiation between Staphylococcus aureus and Staphylococcus epidermidis strains using Raman spectroscopy. Future Microbiol. 2017;12:881–890. doi: 10.2217/fmb-2016-0224. PubMed DOI
Lasalvia M., Capozzi V., Perna G. A Comparison of PCA-LDA and PLS-DA Techniques for Classification of Vibrational Spectra. Appl. Sci. 2022;12:5345. doi: 10.3390/app12115345. DOI
Thiffault E., Barrette J., Blanchet P., Nguyen Q.N., Adjalle K. Optimizing Quality of Wood Pellets Made of Hardwood Processing Residues. Forests. 2019;10:607. doi: 10.3390/f10070607. DOI
Raman Base: Open Online Database of Raman Spectra. Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic. [(accessed on 13 November 2025)]. Available online: www.ramanbase.org.