From Corrosion Control to Cell Adhesion: Parascholzite as a Functional Interface for Biodegradable Zinc Alloys
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-05592S
Czech Science Foundation
PubMed
41598127
PubMed Central
PMC12842733
DOI
10.3390/ma19020416
PII: ma19020416
Knihovny.cz E-zdroje
- Klíčová slova
- biodegradable zinc alloys, calcium phosphate surfaces, cell adhesion, corrosion behavior, parascholzite coating,
- Publikační typ
- časopisecké články MeSH
Zinc-based alloys are promising candidates for biodegradable implant applications; however, their rapid initial corrosion and limited cytocompatibility remain major challenges. In this study, a Zn-Ca-P layer in a form of parascholzite (CaZn2(PO4)2·2H2O) was prepared on a Zn-0.8Mg-0.2Sr alloy via anodic oxidation followed by short-time biomimetic calcium-phosphate deposition. The formation mechanism, corrosion behaviour, and preliminary biological response of the modified surface were systematically investigated. The Zn-Ca-P layer formed a compact and crystalline phosphate layer that significantly altered the corrosion response of the zinc substrate in Leibovitz L-15 medium containing foetal bovine serum. Electrochemical measurements revealed a pronounced improvement in corrosion resistance and a transition from rapid active dissolution to a controlled, ion-exchange-driven degradation mechanism. The moderate solubility of parascholzite enabled the gradual release of Zn2+ and Ca2+ ions while maintaining surface stability during immersion. Preliminary cell adhesion experiments demonstrated a clear enhancement of cytocompatibility for the Zn-Ca-P-layer-coated samples, where cells readily adhered and spread, in contrast to the bare alloy surface, which showed lower cell attachment. The improved biological response is attributed to the phosphate-rich surface chemistry, favourable surface morphology, and moderated corrosion behaviour. Overall, the parascholzite-like layer provides an effective strategy with which to regulate both corrosion and early cell-material interactions of zinc-based biodegradable alloys, highlighting its potential for temporary biomedical implant applications.
Zobrazit více v PubMed
Pesode P., Barve S. Surface Modification of Biodegradable Zinc Alloy for Biomedical Applications. BioNanoScience. 2023;13:1381–1398. doi: 10.1007/s12668-023-01139-5. DOI
Yuan W., Xia D., Wu S., Zheng Y., Guan Z., Rau J.V. A Review on Current Research Status of the Surface Modification of Zn-Based Biodegradable Metals. Bioact. Mater. 2022;7:192–216. doi: 10.1016/j.bioactmat.2021.05.018. PubMed DOI PMC
Liu Y., Zheng Y., Chen X.-H., Yang J.-A., Pan H., Chen D., Wang L., Zhang J., Zhu D., Wu S., et al. Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design. Adv. Funct. Mater. 2019;29:1805402. doi: 10.1002/adfm.201805402. DOI
Kiouri D.P., Tsoupra E., Peana M., Perlepes S.P., Stefanidou M.E., Chasapis C.T. Multifunctional Role of Zinc in Human Health: An Update. EXCLI J. 2023;22:809. doi: 10.17179/EXCLI2023-6335. PubMed DOI PMC
Pinc J., Školáková A., Hybášek V., Msallamová Š., Veřtát P., Ashcheulov P., Vondráček M., Duchoň J., McCarroll I., Hývl M., et al. A Detailed Mechanism of Degradation Behaviour of Biodegradable As-ECAPed Zn-0.8Mg-0.2Sr with Emphasis on Localized Corrosion Attack. Bioact. Mater. 2023;27:447–460. doi: 10.1016/j.bioactmat.2023.04.012. PubMed DOI PMC
Palai D., De A., Prasad P.S., Roy T., Mukherjee S., Dhara S., Das S., Das K. Feasibility Insights of the Green-Assisted Calcium-Phosphate Coating on Biodegradable Zinc Alloys for Biomedical Application: In Vitro and In Vivo Studies. ACS Appl. Mater. Interfaces. 2024;16:24274–24294. doi: 10.1021/acsami.4c02540. PubMed DOI
Hu Z., Chen Q., Li Z., Yu Y., Peng L.-M. Large-Scale and Rapid Synthesis of Ultralong ZnO Nanowire Films via Anodization. J. Phys. Chem. C. 2010;114:881–889. doi: 10.1021/jp9094744. DOI
Dong H., Virtanen S. Anodic ZnO Microsheet Coating on Zn with Sub-Surface Microtrenched Zn Layer Reduces Risk of Localized Corrosion and Improves Bioactivity of Pure Zn. Coatings. 2021;11:486. doi: 10.3390/coatings11050486. DOI
Zhao J., Wang X., Liu J., Meng Y., Xu X., Tang C. Controllable Growth of Zinc Oxide Nanosheets and Sunflower Structures by Anodization Method. Mater. Chem. Phys. 2011;126:555–559. doi: 10.1016/j.matchemphys.2011.01.028. DOI
Dong H., Zhou J., Virtanen S. Fabrication of ZnO Nanotube Layer on Zn and Evaluation of Corrosion Behavior and Bioactivity in View of Biodegradable Applications. Appl. Surf. Sci. 2019;494:259–265. doi: 10.1016/j.apsusc.2019.07.165. DOI
Klíma K., Ulmann D., Bartoš M., Španko M., Dušková J., Vrbová R., Pinc J., Kubásek J., Vlk M., Ulmannová T., et al. A Complex Evaluation of the In-Vivo Biocompatibility and Degradation of an Extruded ZnMgSr Absorbable Alloy Implanted into Rabbit Bones for 360 Days. Int. J. Mol. Sci. 2021;22:13444. doi: 10.3390/ijms222413444. PubMed DOI PMC
Tian Y., Xu Y., Pinc J., Fojt J., Hybášek V., Kubásek J., Msallamová Š., Xiang Y., Guo M., Čapek J., et al. Biodegradable Zn-0.8Mg-0.2Sr Alloy as an Internal Fixation Material Exhibits Controlled Degradation with Enhanced Osteogenesis. RSC Adv. 2025;15:30071–30088. doi: 10.1039/D5RA02009C. PubMed DOI PMC
Jablonská E., Vojtěch D., Fousová M., Kubásek J., Lipov J., Fojt J., Ruml T. Influence of Surface Pre-Treatment on the Cytocompatibility of a Novel Biodegradable ZnMg Alloy. Mater. Sci. Eng. C. 2016;68:198–204. doi: 10.1016/j.msec.2016.05.114. PubMed DOI
Shearier E.R., Bowen P.K., He W., Drelich A., Drelich J., Goldman J., Zhao F. In Vitro Cytotoxicity, Adhesion, and Proliferation of Human Vascular Cells Exposed to Zinc. ACS Biomater. Sci. Eng. 2016;2:634–642. doi: 10.1021/acsbiomaterials.6b00035. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
American Type Culture Collection . HFOB 1.19 [CRL-3602] ATCC; Manassas, VA, USA: 1997.
Školáková A., Pinc J., Kubík R., Hosová K., Fojt J., Jablonská E., Slepička P., Tesař K., Drahokoupil J., Hybášek V., et al. The Effect of Pulsed Laser on the Surface State of 3D-Printed Triply Periodic Structures in TiAl6V4 Alloy. Prog. Addit. Manuf. 2025;10:10627–10647. doi: 10.1007/s40964-025-01254-7. DOI
Liu Q., Li A., Liu S., Fu Q., Xu Y., Dai J., Li P., Xu S. Cytotoxicity of Biodegradable Zinc and Its Alloys: A Systematic Review. J. Funct. Biomater. 2023;14:206. doi: 10.3390/jfb14040206. PubMed DOI PMC
Kokubo T., Takadama H. How Useful Is SBF in Predicting In Vivo Bone Bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI
Willumeit-Römer R., Bruns S., Helmholz H., Krüger D., Wiese B., Galli S., Moosmann J., Zeller-Plumhoff B. The Comparability of In Vitro and In Vivo Experiments for Degradable Mg Implants. In: Maier P., Barela S., Miller V.M., Neelameggham N.R., editors. Magnesium Technology 2022. Springer International Publishing; Cham, Switzerland: 2022. pp. 9–16.
Bowen P.K., Drelich J., Goldman J. Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents. Adv. Mater. 2013;25:2577–2582. doi: 10.1002/adma.201300226. PubMed DOI
Bowen P.K., Shearier E.R., Zhao S., Guillory R.J., II, Zhao F., Goldman J., Drelich J.W. Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys. Adv. Healthc. Mater. 2016;5:1121–1140. doi: 10.1002/adhm.201501019. PubMed DOI PMC
Anselme K. Osteoblast Adhesion on Biomaterials. Biomaterials. 2000;21:667–681. doi: 10.1016/S0142-9612(99)00242-2. PubMed DOI
Dalby M.J., Gadegaard N., Oreffo R.O.C. Harnessing Nanotopography and Integrin–Matrix Interactions to Influence Stem Cell Fate. Nat. Mater. 2014;13:558–569. doi: 10.1038/nmat3980. PubMed DOI
Luo J., Walker M., Xiao Y., Donnelly H., Dalby M.J., Salmeron-Sanchez M. The Influence of Nanotopography on Cell Behaviour through Interactions with the Extracellular Matrix—A Review. Bioact. Mater. 2022;15:145–159. doi: 10.1016/j.bioactmat.2021.11.024. PubMed DOI PMC
Sutthavas P., Schumacher M., Zheng K., Habibović P., Boccaccini A.R., van Rijt S. Zn-Loaded and Calcium Phosphate-Coated Degradable Silica Nanoparticles Can Effectively Promote Osteogenesis in Human Mesenchymal Stem Cells. Nanomaterials. 2022;12:2918. doi: 10.3390/nano12172918. PubMed DOI PMC
Yamaguchi M. Role of Nutritional Zinc in the Prevention of Osteoporosis. Mol. Cell. Biochem. 2010;338:241–254. doi: 10.1007/s11010-009-0358-0. PubMed DOI