Small molecule FTO inhibitor MO-I-500 protects differentiated SH-SY5Y neuronal cells from oxidative stress

. 2025 ; 18 () : 1736173. [epub] 20260112

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41602161

INTRODUCTION: Oxidative stress is a central driver of brain aging, impairing cellular function and increasing susceptibility to neurodegenerative diseases. Recent studies suggest that the RNA demethylase FTO regulates N6-methyladenosine (m6A) RNA modification, a key pathway in modulating oxidative stress in the brain. However, the precise mechanisms underlying FTO's role remain unclear. This study examines the neuroprotective potential of MO-I-500, a small-molecule FTO inhibitor, against oxidative stress induced by tert-butyl hydroperoxide (TBHP) in neuron-like SH-SY5Y cells differentiated with retinoic acid and BDNF (dSH-SY5Y). METHODS: dSH-SY5Y cells were treated with MO-I-500 alone for 72 h or with TBHP alone for 24 h. Alternatively, cells were pretreated with 1 μM MO-I-500 for 48 h, followed by co-treatment with MO-I-500 and 25 or 50 μM TBHP for an additional 24 h, for a total treatment duration of 72 h. Cellular metabolism was assessed using a Seahorse XF MitoStress assay, and oxidative stress markers, including ROS and superoxide levels, were quantified with DCFDA and MitoSOX probes. ATP content was measured using a bioluminescence assay. RESULTS: FTO inhibition by MO-I-500 induced a metabolic shift toward an energy-efficient state, enhancing cellular resilience to oxidative stress. Pretreatment significantly reduced TBHP-induced oxidative damage, lowering intracellular ROS levels and preserving ATP content. CONCLUSION: Together with our previous findings demonstrating the protective effects of MO-I-500 in astrocytes and recent studies supporting the importance of astrocyte function in neurodegeneration, these results suggest a dual protective role of MO-I-500 in neurons and astrocytes. This dual action positions MO-I-500 as a promising therapeutic strategy to mitigate oxidative damage and reduce the risk of neurodegenerative diseases, including Alzheimer's disease.

Zobrazit více v PubMed

Aquilano K., Baldelli S., Pagliei B., Cannata S. M., Rotilio G., Ciriolo M. R. (2013). P53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid. Redox Signal. 18:386. doi: 10.1089/ARS.2012.4615 PubMed DOI PMC

Benak D., Kolar F., Zhang L., Devaux Y., Hlavackova M. (2023). RNA modification m6Am: the role in cardiac biology. Epigenetics 18:771. doi: 10.1080/15592294.2023.2218771, PubMed DOI PMC

Błaszczyk J. W. (2020). Energy metabolism decline in the aging brain—pathogenesis of neurodegenerative disorders. Meta 10:450. doi: 10.3390/METABO10110450 PubMed DOI PMC

Cantó C., Auwerx J. (2009). PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20, 98–105. doi: 10.1097/MOL.0B013E328328D0A4, PubMed DOI PMC

Chausse B., Malorny N., Lewen A., Poschet G., Berndt N., Kann O. (2024). Metabolic flexibility ensures proper neuronal network function in moderate neuroinflammation. Sci. Rep. 14:872. doi: 10.1038/S41598-024-64872-1 PubMed DOI PMC

Chen X., Kong J., Xp C., Cy G., Kong J. M., Chen X., et al. (2012). Oxidative stress in neurodegenerative diseases. Neural Regen. Res. 7:376. doi: 10.3969/J.ISSN.1673-5374.2012.05.009 PubMed DOI PMC

Chen J., Liu B., Yao X., Yang X., Sun J., Yi J., et al. (2025). AMPK/SIRT1/PGC-1α signaling pathway: molecular mechanisms and targeted strategies from energy homeostasis regulation to disease therapy. CNS Neurosci. Ther. 31:e70657. doi: 10.1111/CNS.70657, PubMed DOI PMC

Chen W., Zhao H., Li Y. (2023). Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct. Target. Ther. 8:547. doi: 10.1038/S41392-023-01547-9 PubMed DOI PMC

Chokkalla A. K., Mehta S. L., Vemuganti R. (2020). Epitranscriptomic regulation by m6A RNA methylation in brain development and diseases. J. Cereb. Blood Flow Metab. 40, 2331–2349. doi: 10.1177/0271678X20960033 PubMed DOI PMC

Cockova Z., Honc O., Telensky P., Olsen M. J., Novotny J. (2021). Streptozotocin-induced astrocyte mitochondrial dysfunction is ameliorated by FTO inhibitor MO-I-500. ACS Chem. Neurosci. 12, 3818–3828. doi: 10.1021/ACSCHEMNEURO.1C00063, PubMed DOI

D’Egidio F., Qosja E., Ammannito F., Topi S., d’Angelo M., Cimini A., et al. (2025). Antioxidant and anti-inflammatory defenses in Huntington’s disease: roles of NRF2 and PGC-1α, and therapeutic strategies. Life 15:577. doi: 10.3390/LIFE15040577, PubMed DOI PMC

De Gaetano A., Gibellini L., Zanini G., Nasi M., Cossarizza A., Pinti M. (2021). Mitophagy and oxidative stress: the role of aging. Antioxidants 10:794. doi: 10.3390/ANTIOX10050794, PubMed DOI PMC

Elfawy H. A., Das B. (2019). Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life Sci. 218, 165–184. doi: 10.1016/J.LFS.2018.12.029 PubMed DOI

Filipovská E., Čočková Z., Černá B., Kubištová A., Spišská V., Telenský P., et al. (2024). The role of N6-methyladenosine RNA methylation in the crosstalk of circadian clock and neuroinflammation in rodent suprachiasmatic nuclei. Eur. J. Neurosci. 60, 4586–4596. doi: 10.1111/EJN.16471, PubMed DOI

Garcia D., Shaw R. J. (2017). AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66, 789–800. doi: 10.1016/j.molcel.2017.05.032, PubMed DOI PMC

Garza-Lombó C., Pappa A., Panayiotidis M. I., Franco R. (2020). Redox homeostasis, oxidative stress and mitophagy. Mitochondrion 51, 105–117. doi: 10.1016/j.mito.2020.01.002, PubMed DOI PMC

Giorgi C., Marchi S., Simoes I. C. M., Ren Z., Morciano G., Perrone M., et al. (2018). Mitochondria and reactive oxygen species in aging and age-related diseases. Int. Rev. Cell Mol. Biol. 340, 209–344. doi: 10.1016/bs.ircmb.2018.05.006, PubMed DOI PMC

Guo C. Y., Sun L., Chen X. P., Zhang D. S. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 8:2003. doi: 10.3969/J.ISSN.1673-5374.2013.21.009 PubMed DOI PMC

Hardie D. G. (2011). AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev. 25, 1895–1908. doi: 10.1101/GAD.17420111, PubMed DOI PMC

Hou L., Li S., Li S., Wang R., Zhao M., Liu X. (2023). FTO inhibits oxidative stress by mediating m6A demethylation of Nrf2 to alleviate cerebral ischemia/reperfusion injury. J. Physiol. Biochem. 79, 133–146. doi: 10.1007/S13105-022-00929-X, PubMed DOI

Houldsworth A. (2024). Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Commun. 6:356. doi: 10.1093/BRAINCOMMS/FCAD356, PubMed DOI PMC

Kandola K., Bowman A., Birch-Machin M. A. (2015). Oxidative stress - a key emerging impact factor in health, ageing, lifestyle and aesthetics. Int. J. Cosmet. Sci. 37, 1–8. doi: 10.1111/ICS.12287, PubMed DOI

Kang H., Zhang Z., Yu L., Li Y., Liang M., Zhou L. (2018). FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation. J. Cell. Biochem. 119, 5676–5685. doi: 10.1002/JCB.26746, PubMed DOI

Keller L., Xu W., Wang H. X., Winblad B., Fratiglioni L., Graff C. (2011). The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer’s disease risk: a prospective cohort study. J Alzheimer's Dis 23, 461–469. doi: 10.3233/JAD-2010-101068, PubMed DOI

Lee Y. H., Kuk M. U., So M. K., Song E. S., Lee H., Ahn S. K., et al. (2023). Targeting mitochondrial oxidative stress as a strategy to treat aging and age-related diseases. Antioxidants 12:934. doi: 10.3390/ANTIOX12040934, PubMed DOI PMC

Li H., Ren Y., Mao K., Hua F., Yang Y., Wei N., et al. (2018). FTO is involved in Alzheimer’s disease by targeting TSC1-mTOR-Tau signaling. Biochem. Biophys. Res. Commun. 498, 234–239. doi: 10.1016/J.BBRC.2018.02.201, PubMed DOI

Liu L., Liu M., Song Z., Zhang H. (2024). Silencing of FTO inhibits oxidative stress to relieve neuropathic pain by m6A modification of GPR177. Immun. Inflamm. Dis. 12:e1345. doi: 10.1002/IID3.1345, PubMed DOI PMC

Minhas P. S., Jones J. R., Latif-Hernandez A., Sugiura Y., Durairaj A. S., Wang Q., et al. (2024). Restoring hippocampal glucose metabolism rescues cognition across Alzheimer’s disease pathologies. Science 3:385. doi: 10.1126/SCIENCE.ABM6131, PubMed DOI PMC

Misrani A., Tabassum S., Yang L. (2021). Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 13:617588. doi: 10.3389/FNAGI.2021.617588, PubMed DOI PMC

Motori E., Atanassov I., Kochan S. M. V., Folz-Donahue K., Sakthivelu V., Giavalisco P., et al. (2020). Neuronal metabolic rewiring promotes resilience to neurodegeneration caused by mitochondrial dysfunction. Sci. Adv. 6:eaba8271. doi: 10.1126/sciadv.aba8271, PubMed DOI PMC

Rius-Pérez S., Torres-Cuevas I., Millán I., Ortega Á. L., Pérez S., Sandhu M. A. (2020). PGC-1α, Inflammation, and oxidative stress: an integrative view in metabolism. Oxidative Med. Cell. Longev. 2020, 1–20. doi: 10.1155/2020/1452696, PubMed DOI PMC

Shafik A. M., Zhang F., Guo Z., Dai Q., Pajdzik K., Li Y., et al. (2021). N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease. Genome Biol. 22:17. doi: 10.1186/S13059-020-02249-Z, PubMed DOI PMC

Singh B., Kinne H. E., Milligan R. D., Washburn L. J., Olsen M., Lucci A. (2016). Important role of FTO in the survival of rare panresistant triple-negative inflammatory breast cancer cells facing a severe metabolic challenge. PLoS One 11:e0159072. doi: 10.1371/JOURNAL.PONE.0159072, PubMed DOI PMC

Somasundaram I., Jain S. M., Blot-Chabaud M., Pathak S., Banerjee A., Rawat S., et al. (2024). Mitochondrial dysfunction and its association with age-related disorders. Front. Physiol. 15:966. doi: 10.3389/FPHYS.2024.1384966, PubMed DOI PMC

Song J., Hao J., Lu Y., Ding X., Li M., Xin Y. (2024). Increased m6A modification of BDNF mRNA via FTO promotes neuronal apoptosis following aluminum-induced oxidative stress. Environ. Pollut. 349:123848. doi: 10.1016/j.envpol.2024.123848, PubMed DOI

Trinh D., Al Halabi L., Brar H., Kametani M., Nash J. E. (2024). The role of SIRT3 in homeostasis and cellular health. Front. Cell. Neurosci. 18:1434459. doi: 10.3389/FNCEL.2024.1434459/FULL PubMed DOI PMC

Wang X., Huang N., Yang M., Wei D., Tai H., Han X., et al. (2017). FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. Cell Death Dis. 8, e2702–e2702. doi: 10.1038/cddis.2017.122, PubMed DOI PMC

Wu Z., Shi Y., Lu M., Song M., Yu Z., Wang J., et al. (2020). METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Res. 48, 11083–11096. doi: 10.1093/NAR/GKAA816, PubMed DOI PMC

Yang J., Luo J., Tian X., Zhao Y., Li Y., Wu X. (2024). Progress in understanding oxidative stress, aging, and aging-related diseases. Antioxidants 13:394. doi: 10.3390/ANTIOX13040394 PubMed DOI PMC

Zhang B., Jiang H., Wu J., Cai Y., Dong Z., Zhao Y., et al. (2021). m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct. Target. Ther. 6:377. doi: 10.1038/S41392-021-00699-W, PubMed DOI PMC

Zheng G., Cox T., Tribbey L., Wang G. Z., Iacoban P., Booher M. E., et al. (2014). Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem. Neurosci. 5, 658–665. doi: 10.1021/CN500042T PubMed DOI PMC

Zhou L., Li R., Wang F., Zhou R., Xia Y., Jiang X., et al. (2024). N6-methyladenosine demethylase FTO regulates neuronal oxidative stress via YTHDC1-ATF3 axis in arsenic-induced cognitive dysfunction. J. Hazard. Mater. 480:135736. doi: 10.1016/J.JHAZMAT.2024.135736, PubMed DOI

Zhuang C., Zhuang C., Luo X., Huang X., Yao L., Li J., et al. (2019). N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis. J. Cell. Mol. Med. 23, 2163–2173. doi: 10.1111/JCMM.14128, PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...