Small molecule FTO inhibitor MO-I-500 protects differentiated SH-SY5Y neuronal cells from oxidative stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41602161
PubMed Central
PMC12832913
DOI
10.3389/fnmol.2025.1736173
Knihovny.cz E-zdroje
- Klíčová slova
- FTO inhibition, ROS, aging, m6A, neuroprotection, oxidative stress,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Oxidative stress is a central driver of brain aging, impairing cellular function and increasing susceptibility to neurodegenerative diseases. Recent studies suggest that the RNA demethylase FTO regulates N6-methyladenosine (m6A) RNA modification, a key pathway in modulating oxidative stress in the brain. However, the precise mechanisms underlying FTO's role remain unclear. This study examines the neuroprotective potential of MO-I-500, a small-molecule FTO inhibitor, against oxidative stress induced by tert-butyl hydroperoxide (TBHP) in neuron-like SH-SY5Y cells differentiated with retinoic acid and BDNF (dSH-SY5Y). METHODS: dSH-SY5Y cells were treated with MO-I-500 alone for 72 h or with TBHP alone for 24 h. Alternatively, cells were pretreated with 1 μM MO-I-500 for 48 h, followed by co-treatment with MO-I-500 and 25 or 50 μM TBHP for an additional 24 h, for a total treatment duration of 72 h. Cellular metabolism was assessed using a Seahorse XF MitoStress assay, and oxidative stress markers, including ROS and superoxide levels, were quantified with DCFDA and MitoSOX probes. ATP content was measured using a bioluminescence assay. RESULTS: FTO inhibition by MO-I-500 induced a metabolic shift toward an energy-efficient state, enhancing cellular resilience to oxidative stress. Pretreatment significantly reduced TBHP-induced oxidative damage, lowering intracellular ROS levels and preserving ATP content. CONCLUSION: Together with our previous findings demonstrating the protective effects of MO-I-500 in astrocytes and recent studies supporting the importance of astrocyte function in neurodegeneration, these results suggest a dual protective role of MO-I-500 in neurons and astrocytes. This dual action positions MO-I-500 as a promising therapeutic strategy to mitigate oxidative damage and reduce the risk of neurodegenerative diseases, including Alzheimer's disease.
Department of Physiology Faculty of Science Charles University Prague Czechia
Imaging Methods Core Facility at BIOCEV Faculty of Science Charles University Vestec Czechia
Pharmacometrics Center of Excellence Midwestern University Downer's Grove IL United States
Zobrazit více v PubMed
Aquilano K., Baldelli S., Pagliei B., Cannata S. M., Rotilio G., Ciriolo M. R. (2013). P53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid. Redox Signal. 18:386. doi: 10.1089/ARS.2012.4615 PubMed DOI PMC
Benak D., Kolar F., Zhang L., Devaux Y., Hlavackova M. (2023). RNA modification m6Am: the role in cardiac biology. Epigenetics 18:771. doi: 10.1080/15592294.2023.2218771, PubMed DOI PMC
Błaszczyk J. W. (2020). Energy metabolism decline in the aging brain—pathogenesis of neurodegenerative disorders. Meta 10:450. doi: 10.3390/METABO10110450 PubMed DOI PMC
Cantó C., Auwerx J. (2009). PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20, 98–105. doi: 10.1097/MOL.0B013E328328D0A4, PubMed DOI PMC
Chausse B., Malorny N., Lewen A., Poschet G., Berndt N., Kann O. (2024). Metabolic flexibility ensures proper neuronal network function in moderate neuroinflammation. Sci. Rep. 14:872. doi: 10.1038/S41598-024-64872-1 PubMed DOI PMC
Chen X., Kong J., Xp C., Cy G., Kong J. M., Chen X., et al. (2012). Oxidative stress in neurodegenerative diseases. Neural Regen. Res. 7:376. doi: 10.3969/J.ISSN.1673-5374.2012.05.009 PubMed DOI PMC
Chen J., Liu B., Yao X., Yang X., Sun J., Yi J., et al. (2025). AMPK/SIRT1/PGC-1α signaling pathway: molecular mechanisms and targeted strategies from energy homeostasis regulation to disease therapy. CNS Neurosci. Ther. 31:e70657. doi: 10.1111/CNS.70657, PubMed DOI PMC
Chen W., Zhao H., Li Y. (2023). Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct. Target. Ther. 8:547. doi: 10.1038/S41392-023-01547-9 PubMed DOI PMC
Chokkalla A. K., Mehta S. L., Vemuganti R. (2020). Epitranscriptomic regulation by m6A RNA methylation in brain development and diseases. J. Cereb. Blood Flow Metab. 40, 2331–2349. doi: 10.1177/0271678X20960033 PubMed DOI PMC
Cockova Z., Honc O., Telensky P., Olsen M. J., Novotny J. (2021). Streptozotocin-induced astrocyte mitochondrial dysfunction is ameliorated by FTO inhibitor MO-I-500. ACS Chem. Neurosci. 12, 3818–3828. doi: 10.1021/ACSCHEMNEURO.1C00063, PubMed DOI
D’Egidio F., Qosja E., Ammannito F., Topi S., d’Angelo M., Cimini A., et al. (2025). Antioxidant and anti-inflammatory defenses in Huntington’s disease: roles of NRF2 and PGC-1α, and therapeutic strategies. Life 15:577. doi: 10.3390/LIFE15040577, PubMed DOI PMC
De Gaetano A., Gibellini L., Zanini G., Nasi M., Cossarizza A., Pinti M. (2021). Mitophagy and oxidative stress: the role of aging. Antioxidants 10:794. doi: 10.3390/ANTIOX10050794, PubMed DOI PMC
Elfawy H. A., Das B. (2019). Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life Sci. 218, 165–184. doi: 10.1016/J.LFS.2018.12.029 PubMed DOI
Filipovská E., Čočková Z., Černá B., Kubištová A., Spišská V., Telenský P., et al. (2024). The role of N6-methyladenosine RNA methylation in the crosstalk of circadian clock and neuroinflammation in rodent suprachiasmatic nuclei. Eur. J. Neurosci. 60, 4586–4596. doi: 10.1111/EJN.16471, PubMed DOI
Garcia D., Shaw R. J. (2017). AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66, 789–800. doi: 10.1016/j.molcel.2017.05.032, PubMed DOI PMC
Garza-Lombó C., Pappa A., Panayiotidis M. I., Franco R. (2020). Redox homeostasis, oxidative stress and mitophagy. Mitochondrion 51, 105–117. doi: 10.1016/j.mito.2020.01.002, PubMed DOI PMC
Giorgi C., Marchi S., Simoes I. C. M., Ren Z., Morciano G., Perrone M., et al. (2018). Mitochondria and reactive oxygen species in aging and age-related diseases. Int. Rev. Cell Mol. Biol. 340, 209–344. doi: 10.1016/bs.ircmb.2018.05.006, PubMed DOI PMC
Guo C. Y., Sun L., Chen X. P., Zhang D. S. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 8:2003. doi: 10.3969/J.ISSN.1673-5374.2013.21.009 PubMed DOI PMC
Hardie D. G. (2011). AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev. 25, 1895–1908. doi: 10.1101/GAD.17420111, PubMed DOI PMC
Hou L., Li S., Li S., Wang R., Zhao M., Liu X. (2023). FTO inhibits oxidative stress by mediating m6A demethylation of Nrf2 to alleviate cerebral ischemia/reperfusion injury. J. Physiol. Biochem. 79, 133–146. doi: 10.1007/S13105-022-00929-X, PubMed DOI
Houldsworth A. (2024). Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Commun. 6:356. doi: 10.1093/BRAINCOMMS/FCAD356, PubMed DOI PMC
Kandola K., Bowman A., Birch-Machin M. A. (2015). Oxidative stress - a key emerging impact factor in health, ageing, lifestyle and aesthetics. Int. J. Cosmet. Sci. 37, 1–8. doi: 10.1111/ICS.12287, PubMed DOI
Kang H., Zhang Z., Yu L., Li Y., Liang M., Zhou L. (2018). FTO reduces mitochondria and promotes hepatic fat accumulation through RNA demethylation. J. Cell. Biochem. 119, 5676–5685. doi: 10.1002/JCB.26746, PubMed DOI
Keller L., Xu W., Wang H. X., Winblad B., Fratiglioni L., Graff C. (2011). The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer’s disease risk: a prospective cohort study. J Alzheimer's Dis 23, 461–469. doi: 10.3233/JAD-2010-101068, PubMed DOI
Lee Y. H., Kuk M. U., So M. K., Song E. S., Lee H., Ahn S. K., et al. (2023). Targeting mitochondrial oxidative stress as a strategy to treat aging and age-related diseases. Antioxidants 12:934. doi: 10.3390/ANTIOX12040934, PubMed DOI PMC
Li H., Ren Y., Mao K., Hua F., Yang Y., Wei N., et al. (2018). FTO is involved in Alzheimer’s disease by targeting TSC1-mTOR-Tau signaling. Biochem. Biophys. Res. Commun. 498, 234–239. doi: 10.1016/J.BBRC.2018.02.201, PubMed DOI
Liu L., Liu M., Song Z., Zhang H. (2024). Silencing of FTO inhibits oxidative stress to relieve neuropathic pain by m6A modification of GPR177. Immun. Inflamm. Dis. 12:e1345. doi: 10.1002/IID3.1345, PubMed DOI PMC
Minhas P. S., Jones J. R., Latif-Hernandez A., Sugiura Y., Durairaj A. S., Wang Q., et al. (2024). Restoring hippocampal glucose metabolism rescues cognition across Alzheimer’s disease pathologies. Science 3:385. doi: 10.1126/SCIENCE.ABM6131, PubMed DOI PMC
Misrani A., Tabassum S., Yang L. (2021). Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 13:617588. doi: 10.3389/FNAGI.2021.617588, PubMed DOI PMC
Motori E., Atanassov I., Kochan S. M. V., Folz-Donahue K., Sakthivelu V., Giavalisco P., et al. (2020). Neuronal metabolic rewiring promotes resilience to neurodegeneration caused by mitochondrial dysfunction. Sci. Adv. 6:eaba8271. doi: 10.1126/sciadv.aba8271, PubMed DOI PMC
Rius-Pérez S., Torres-Cuevas I., Millán I., Ortega Á. L., Pérez S., Sandhu M. A. (2020). PGC-1α, Inflammation, and oxidative stress: an integrative view in metabolism. Oxidative Med. Cell. Longev. 2020, 1–20. doi: 10.1155/2020/1452696, PubMed DOI PMC
Shafik A. M., Zhang F., Guo Z., Dai Q., Pajdzik K., Li Y., et al. (2021). N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease. Genome Biol. 22:17. doi: 10.1186/S13059-020-02249-Z, PubMed DOI PMC
Singh B., Kinne H. E., Milligan R. D., Washburn L. J., Olsen M., Lucci A. (2016). Important role of FTO in the survival of rare panresistant triple-negative inflammatory breast cancer cells facing a severe metabolic challenge. PLoS One 11:e0159072. doi: 10.1371/JOURNAL.PONE.0159072, PubMed DOI PMC
Somasundaram I., Jain S. M., Blot-Chabaud M., Pathak S., Banerjee A., Rawat S., et al. (2024). Mitochondrial dysfunction and its association with age-related disorders. Front. Physiol. 15:966. doi: 10.3389/FPHYS.2024.1384966, PubMed DOI PMC
Song J., Hao J., Lu Y., Ding X., Li M., Xin Y. (2024). Increased m6A modification of BDNF mRNA via FTO promotes neuronal apoptosis following aluminum-induced oxidative stress. Environ. Pollut. 349:123848. doi: 10.1016/j.envpol.2024.123848, PubMed DOI
Trinh D., Al Halabi L., Brar H., Kametani M., Nash J. E. (2024). The role of SIRT3 in homeostasis and cellular health. Front. Cell. Neurosci. 18:1434459. doi: 10.3389/FNCEL.2024.1434459/FULL PubMed DOI PMC
Wang X., Huang N., Yang M., Wei D., Tai H., Han X., et al. (2017). FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. Cell Death Dis. 8, e2702–e2702. doi: 10.1038/cddis.2017.122, PubMed DOI PMC
Wu Z., Shi Y., Lu M., Song M., Yu Z., Wang J., et al. (2020). METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Res. 48, 11083–11096. doi: 10.1093/NAR/GKAA816, PubMed DOI PMC
Yang J., Luo J., Tian X., Zhao Y., Li Y., Wu X. (2024). Progress in understanding oxidative stress, aging, and aging-related diseases. Antioxidants 13:394. doi: 10.3390/ANTIOX13040394 PubMed DOI PMC
Zhang B., Jiang H., Wu J., Cai Y., Dong Z., Zhao Y., et al. (2021). m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct. Target. Ther. 6:377. doi: 10.1038/S41392-021-00699-W, PubMed DOI PMC
Zheng G., Cox T., Tribbey L., Wang G. Z., Iacoban P., Booher M. E., et al. (2014). Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem. Neurosci. 5, 658–665. doi: 10.1021/CN500042T PubMed DOI PMC
Zhou L., Li R., Wang F., Zhou R., Xia Y., Jiang X., et al. (2024). N6-methyladenosine demethylase FTO regulates neuronal oxidative stress via YTHDC1-ATF3 axis in arsenic-induced cognitive dysfunction. J. Hazard. Mater. 480:135736. doi: 10.1016/J.JHAZMAT.2024.135736, PubMed DOI
Zhuang C., Zhuang C., Luo X., Huang X., Yao L., Li J., et al. (2019). N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis. J. Cell. Mol. Med. 23, 2163–2173. doi: 10.1111/JCMM.14128, PubMed DOI PMC