Nitrogen-Doped Borane Cluster Network for High-Performance Supercapacitors Under Universal pH Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články
PubMed
41611261
PubMed Central
PMC12854923
DOI
10.1002/cssc.202502009
Knihovny.cz E-zdroje
- Klíčová slova
- N doping, borane cluster network, porous polymer, solid state NMR, supercapacitors,
- Publikační typ
- časopisecké články MeSH
Supercapacitors have garnered considerable attention as next-generation energy storage systems due to their high-power density, rapid charge-discharge kinetics, and long operational lifespan. In this study, we report the design and development of a nitrogen-doped activated borane (ActB), a porous borane cluster-based network, synthesized through the controlled cothermolysis of arachno-B9H13(NEt3) and [Et3NH][nido-B11H14] in toluene. The resulting polymeric materials integrate electron-rich nitrogen sites with the unique 3D boron cluster architecture, offering a synergistic platform for enhanced electrochemical performance. Electrochemical evaluation in a three-electrode system revealed a high specific capacitance of 607 F g-1 at 0.5 A g-1, with remarkable cycling stability, retaining 95% of the initial capacitance after 15,000 charge-discharge cycles. When configured into an asymmetric supercapacitor device using activated carbon as the negative electrode, the system achieved a specific capacitance of 354 F g-1, along with an energy density of 25.6 Wh kg-1 and a power density of 486.2 W kg-1 at a current density of 0.5 A g-1. The device also demonstrated long-term reliability, retaining 88% of its initial capacitance after 15,000 cycles. The outstanding performance is attributed to the integration of redox-active nitrogen functionalities and the inherent stability and tunability of the borane-based framework. This work establishes nitrogen-doped borane cluster polymers as a promising new class of electrode materials for high-performance supercapacitors and broader electrochemical energy storage applications.
Zobrazit více v PubMed
Huang P., Lethien C., Pinaud S., et al., “On‐Chip and Freestanding Elastic Carbon Films for Micro‐Supercapacitors,” Science 351 (2016): 691–695, 10.1126/science.aad3345. PubMed DOI
Kim H.‐S., Cook J. B., Lin H., et al., “Oxygen Vacancies Enhance Pseudocapacitive Charge Storage Properties of MoO PubMed DOI
Chhetri K., Dahal B., Mukhiya T., et al., “Integrated Hybrid of Graphitic Carbon‐Encapsulated CuxO on Multilayered Mesoporous Carbon From Copper MOFs and Polyaniline for Asymmetric Supercapacitor and Oxygen Reduction Reactions,” Carbon 179 (2021): 89–99, 10.1016/j.carbon.2021.04.028. DOI
Fong K. D., Wang T., Kim H.‐K., Kumar R. V., and Smoukov S. K., “Semi‐Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes,” ACS Energy Letters 2 (2017): 2014–2020, 10.1021/acsenergylett.7b00466. PubMed DOI PMC
Li D. D., Chen L., Chen L., et al., “Potassium Gluconate‐Derived N/S Co‐Doped Carbon Nanosheets as Superior Electrode Materials for Supercapacitors and Sodium‐Ion Batteries,” Journal of Power Sources 414 (2019): 308–316, 10.1016/j.jpowsour.2018.12.091. DOI
Yao Y., Feng Q., Huo B., et al., “Facile Self‐Templating Synthesis of Heteroatom‐Doped 3D Porous Carbon Materials From Waste Biomass for Supercapacitors,” Chemical Communications 56 (2020): 11689–11692, 10.1039/d0cc04320f. PubMed DOI
Han J., Zhang L. L., Lee S., et al., “Generation of B‐Doped Graphene Nanoplatelets Using a Solution Process and Their Supercapacitor Applications,” ACS Nano 7 (2012): 19–26, 10.1021/nn3034309. PubMed DOI
Bo X. and Guo L., “Ordered Mesoporous Boron‐Doped Carbons as Metal‐Free Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Solution,” Physical Chemistry Chemical Physics 15 (2013): 2459–2465, 10.1039/C2CP43541A. PubMed DOI
Ding S., Zheng S., Xie M., Peng L., Guo X., and Ding W., “One‐Pot Synthesis of Boron‐Doped Mesoporous Carbon with Boric Acid as a Multifunction Reagent,” Microporous and Mesoporous Materials 142 (2011): 609–613, 10.1016/j.micromeso.2011.01.003. DOI
Su Y., Fan X., Xiong Q., and Xiong C., “Multi‐Dimensional Optimization and Diversified Applications of Carbon Fiber‐Based Flexible Electrode Materials – Synergistic Design of Cross‐Type Supercapacitors and Electrolyte Systems,” Journal of Alloys and Compounds 1038 (2025): 182768, 10.1016/j.jallcom.2025.182768. DOI
Kašpar A., Bashta B., Titlová Š., et al., “Ionic Hyper‐Cross‐Linked Porous Polymer Networks with Achiral and Chiral Pyridinium‐Type Segments,” European Polymer Journal 210 (2024): 112971, 10.1016/j.eurpolymj.2024.112971. DOI
Zhang Z., Liu Z., Xue C., Chen H., Han X., and Ren Y., “Amorphous Porous Organic Polymers Containing Main Group Elements,” Communications Chemistry 6 (2023): 271, 10.1038/s42004-023-01063-5. PubMed DOI PMC
Wang H., Shao Y., Mei S., et al., “Polymer‐Derived Heteroatom‐Doped Porous Carbon Materials,” Chemical Reviews 120 (2020): 9363–9419, 10.1021/acs.chemrev.0c00080. PubMed DOI
Prabu S. and Chiang K.‐Y., “Natural Bio‐Waste‐Derived 3D N/O Self‐Doped Heteroatom Honeycomb‐Like Porous Carbon with Tuned Huge Surface Area for High‐Performance Supercapacitor,” Chemosphere 361 (2024): 142400, 10.1016/j.chemosphere.2024.142400. PubMed DOI
Mollart C. and Trewin A., “Conjugated Microporous Polymer Frameworks for Sustainable Energy Materials – Elucidating the Influence of Solvents on the Porosity Properties for Future Design Principles,” Journal of Materials Chemistry A 12 (2024): 4159–4168, 10.1039/D3TA04866G. DOI
Bhanja P., Mishra S., Manna K., Saha K. Das, and Bhaumik A., “Porous Polymer Bearing Polyphenolic Organic Building Units as a Chemotherapeutic Agent for Cancer Treatment,” ACS Omega 3 (2018): 529–535, 10.1021/acsomega.7b01672. PubMed DOI PMC
Yu S.‐B., Lyu H., Tian J., et al., “A Polycationic Covalent Organic Framework: A Robust Adsorbent for Anionic Dye Pollutants,” Polymer Chemistry 7 (2016): 3392–3397, 10.1039/C6PY00281A. DOI
Giri A., Sahoo A., Dutta T. K., and Patra A., “Cavitand and Molecular Cage‐Based Porous Organic Polymers,” ACS Omega 5 (2020): 28413–28424, 10.1021/acsomega.0c04248. PubMed DOI PMC
Sun Q., Aguila B., Song Y., and Ma S., “Tailored Porous Organic Polymers for Task‐Specific Water Purification,” Accounts of Chemical Research 53 (2020): 812–821, 10.1021/acs.accounts.0c00007. PubMed DOI
Wisser F. M., Eckhardt K., Wisser D., et al., “Tailoring Pore Structure and Properties of Functionalized Porous Polymers by Cyclotrimerization,” Macromolecules 47 (2014): 4210–4216, 10.1021/ma500512j. DOI
Miller K., Gayle J. M., Roy S., et al., “Tunable 2D Conjugated Porous Organic Polymer Films for Precise Molecular Nanofiltration and Optoelectronics,” Small 20 (2024): 2401269, 10.1002/smll.202401269. PubMed DOI
Ozcan A., Fan D., Datta S. J., et al., “Tuning MOF/Polymer Interfacial Pore Geometry in Mixed Matrix Membrane for Upgrading CO PubMed DOI PMC
Xie Y., Wang W., Zhang Z., et al., “Fine‐Tuning the Pore Environment of Ultramicroporous Three‐Dimensional Covalent Organic Frameworks for Efficient One‐Step Ethylene Purification,” Nature Communications 15 (2024): 3008, 10.1038/s41467-024-47377-3. PubMed DOI PMC
Radhakrishnan S., Patra A., Manasa G., Belgami M. A., Jeong S. Mun, and Rout C. S., “Borocarbonitride‐Based Emerging Materials for Supercapacitor Applications: Recent Advances, Challenges, and Future Perspectives,” Advancement of Science 11 (2023): 2305325, 10.1002/advs.202305325. PubMed DOI PMC
Shao W., Wu Z., Liu Y., and Tai G., “Stacked Borophene‐Based Electric Double‐Layer Supercapacitors,” Chemical Engineering Journal 500 (2024): 157258, 10.1016/j.cej.2024.157258. DOI
Ramachandran T., Butt H., Zheng L., and Rezeq M., “A Review of 2D Metal Boride‐Derived Nanostructures: From Synthesis to Energy Storage and Conversion Applications,” Journal of Energy Storage 99 (2024): 113425, 10.1016/j.est.2024.113425. DOI
Spokoyny A. M., Farha O. K., Mulfort K. L., Hupp J. T., and Mirkin C. A., “Porosity Tuning of Carborane‐Based Metal–organic Frameworks (MOFs) via Coordination Chemistry and Ligand Design,” Inorganica Chimica Acta 364 (2010): 266–271, 10.1016/j.ica.2010.08.007. DOI
Kennedy R. D., Krungleviciute V., Clingerman D. J., et al., “Carborane‐Based Metal–organic Framework with High Methane and Hydrogen Storage Capacities,” Chemistry of Materials 25 (2013): 3539–3543, 10.1021/cm4020942. DOI
Gan L., Andres‐Garcia E., Espallargas G. Mínguez, and Planas J. G., “Adsorptive Separation of CO2 by a Hydrophobic Carborane‐Based Metal–organic Framework under Humid Conditions,” ACS Applied Materials & Interfaces 15 (2023): 5309–5316, 10.1021/acsami.2c20373. PubMed DOI PMC
Gan L., Chidambaram A., Fonquernie P. G., et al., “A Highly Water‐Stable PubMed DOI
Boldog I., Bereciartua P. J., Bulánek R., et al., “10‐Vertex DOI
Zhu Y., Yang J., Qiu X., et al., “Amphiphilic Carborane‐Based Covalent Organic Frameworks as Efficient Polysulfide Nano‐Trappers for Lithium–sulfur Batteries,” ACS Applied Materials & Interfaces 13 (2021): 60373–60383, 10.1021/acsami.1c19705. PubMed DOI
Li M., Yu J., Xue Y., et al., “Preparation of Carborane‐Tailored Covalent Organic Frameworks by a Postsynthetic Modification Strategy as a Barrier to Polysulfide in Lithium–sulfur Batteries,” ACS Applied Materials & Interfaces 15 (2023): 2922–2932, 10.1021/acsami.2c18407. PubMed DOI
Xu X., Cui Q., Chen H., and Huang N., “Carborane‐Based Three‐Dimensional Covalent Organic Frameworks,” Journal of the American Chemical Society 145 (2023): 24202–24209, 10.1021/jacs.3c08541. PubMed DOI
Bůžek D., Škoch K., Ondrušová S., et al., “Activated Borane” – a Porous Borane Cluster Network as an Effective Adsorbent for Removing Organic Pollutants,” Chemistry – A European Journal 28 (2022): e202201885, 10.1002/chem.202201885. PubMed DOI
Lamač M., Urbán B., Horáček M., et al., “Activated Borane”: A Porous Borane Cluster Polymer as an Efficient Lewis Acid‐Based Catalyst,” ACS Catalysis 13 (2023): 14614–14626, 10.1021/acscatal.3c04011. PubMed DOI PMC
Udnoor A., Urbán B., Škoch K., et al., “Catalytic Dehalogenation with Activated Borane, a Porous Borane Cluster Polymer,” Catalysis Science & Technology 14 (2024): 4458–4465, 10.1039/D4CY00732H. DOI
Tok O. L., Holub J., Růžička A., Růžičková Z., and Štíbr B., “Direct Synthesis of Dicarbollides,” New Journal of Chemistry 42 (2018): 8524–8529, 10.1039/C8NJ00819A. DOI
Demel J., Kloda M., Lang K., et al., “Direct Phenylation of PubMed DOI
Harazono T., Hiroyama Y., and Watanabe T., “Solid State NMR of DOI
Mauri F., Vast N., and Pickard C. J., “Atomic Structure of Icosahedral B4C Boron Carbide From a First Principles Analysis of NMR Spectra,” Physical Review Letters 87 (2001): 085506, 10.1103/PhysRevLett.87.085506. PubMed DOI
Duperrier S., Gervais C., Bernard S., Cornu D., Babonneau F., and Miele P., “Controlling the Chemistry, Morphology and Structure of Boron Nitride‐Based Ceramic Fibers through a Comprehensive Mechanistic Study of the Reactivity of Spinnable Polymers with Ammonia,” Journal of Materials Chemistry 16 (2006): 3126–3135, 10.1039/B604482D. DOI
Kobayashi T., Gupta S., Caporini M. A., Pecharsky V. K., and Pruski M., “Mechanism of Solid‐State Thermolysis of Ammonia Borane: A 15N NMR Study Using Fast Magic‐Angle Spinning and Dynamic Nuclear Polarization,” The Journal of Physical Chemistry C 118 (2014): 19548–19555, 10.1021/jp504328x. DOI
Stubbs N. E., Jurca T., Leitao E. M., Woodall C. H., and Manners I., “Polyaminoborane Main Chain Scission Using N‐Heterocyclic Carbenes; Formation of Donor‐Stabilised Monomeric Aminoboranes,” Chemical Communications 49 (2013): 9098–9100, 10.1039/C3CC44373F. PubMed DOI
Sorochkina K., Zhivonitko V. V., Chernichenko K., Telkki V.‐V., Repo T., and Koptyug I. V., “Spontaneous 15N Nuclear Spin Hyperpolarization in Metal‐Free Activation of Parahydrogen by Molecular Tweezers,” The Journal of Physical Chemistry Letters 9 (2018): 903–907, 10.1021/acs.jpclett.7b03433. PubMed DOI PMC
Kozlova S. G. and Tkachev S. V., “1H NMR Spectra of Triethylamine Binary Aqueous Solutions as Functions of Concentration and Temperature: The Triethylamine‐Rich Phase,” Journal of Molecular Liquids 343 (2021): 117684, 10.1016/j.molliq.2021.117684. DOI
Matsoso B. J., Ranganathan K., Mutuma B. K., Lerotholi T., Jones G., and Coville N. J., “Synthesis and Characterization of Boron Carbon Oxynitride Films with Tunable Composition Using Methane, Boric Acid and Ammonia,” New Journal of Chemistry 41 (2017): 9497–9504, 10.1039/C7NJ01886J. DOI
Wang Y., Wang C., Wang Y., Liu H., and Huang Z., “Boric Acid Assisted Reduction of Graphene Oxide: A Promising Material for Sodium‐Ion Batteries,” ACS Applied Materials & Interfaces 8 (2016): 18860–18866, 10.1021/acsami.6b04774. PubMed DOI
Cui X., Zhang L., Zhang J., et al., “A Novel Metal‐Organic Layered Material with Superior Supercapacitive Performance through Ultrafast and Reversible Tetraethylammonium Intercalation,” Nano Energy 59 (2019): 102–109, 10.1016/j.nanoen.2019.02.034. DOI
Liu B., Liu Y., Chen H., Yang M., and Li H., “Oxygen and Nitrogen Co‐Doped Porous Carbon Nanosheets Derived From DOI
Vinu M., Prabu S., Virgin A., Chiang K.‐Y., Srivastava B., and Ranjithkumar R., “Pre‐Carbonization of B/N/O Heteroatom‐Codoped Hierarchical Porous Carbon Spheres Derived From Bio‐Waste Orange Peel for High‐Performance Supercapacitors,” Materials Research Bulletin 189 (2025): 113441, 10.1016/j.materresbull.2025.113441. DOI
Shore S. G., “Nido‐ and Arachno‐Boron Hydrides,” inBoron Hydride Chemistry, ed. Muetterties E. L. (Academic Press, 1975), 79–174.
Amoureux J.‐P., Fernandez C., and Steuernagel S., “Z‐Filtering in MQMAS NMR,” Journal of Magnetic Resonance, Series A 123 (1996): 116–118, 10.1006/jmra.1996.0221 and references therein. PubMed DOI
Equbal A., Bjerring M., Madhu P. K., and Nielsen N. Chr, “Improving Spectral Resolution in Biological Solid‐State NMR Using Phase‐Alternated rCW Heteronuclear Decoupling,” Chemical Physics Letters 635 (2015): 339–344, 10.1016/j.cplett.2015.07.008. DOI
Brus J., “Heating of Samples Induced by Fast Magic‐Angle Spinning,” Solid State Nuclear Magnetic Resonance 16 (2000): 151–160, 10.1016/S0926-2040(00)00061-8. PubMed DOI
Prakash D. and Manivannan S., “N, B Co‐Doped and Crumpled Graphene Oxide Pseudocapacitive Electrode for High Energy Supercapacitor,” Surfaces and Interfaces 23 (2021): 101025, 10.1016/j.surfin.2021.101025. DOI
Zhao Z. and Xie Y., “Electrochemical Supercapacitor Performance of Boron and Nitrogen Co‐Doped Porous Carbon Nanowires,” Journal of Power Sources 400 (2018): 264–276, 10.1016/j.jpowsour.2018.08.032. DOI
Wu Z., Winter A., Chen L., et al., “Three‐Dimensional Nitrogen and Boron Co‐Doped Graphene for High‐Performance All‐Solid‐State Supercapacitors,” Advanced Materials 24 (2012): 5130–5135, 10.1002/adma.201201948. PubMed DOI
Hao J., Wang J., Qin S., Liu D., Li Y., and Lei W., “B/N Co‐Doped Carbon Nanosphere Frameworks as High‐Performance Electrodes for Supercapacitors,” Journal of Materials Chemistry A 6 (2018): 8053–8058, 10.1039/C8TA00683K. DOI
Tabassum H., Mahmood A., Wang Q., et al., “Hierarchical Cobalt Hydroxide and B/N Co‐Doped Graphene Nanohybrids Derived From Metal–organic Frameworks for High Energy Density Asymmetric Supercapacitors,” Scientific Reports 7 (2017): 43084, 10.1038/srep43084. PubMed DOI PMC
Li R., Qin C., Zhang X., Lin Z., Lv S., and Jiang X., “Boron/Nitrogen Co‐Doped Carbon Synthesized From Waterborne Polyurethane and Graphene Oxide Composite for Supercapacitors,” RSC Advances 9 (2019): 1679–1689, 10.1039/C8RA09043B-10.1038/srep43084. PubMed DOI PMC
Hou J.‐F., Gao J.‐F., and Kong L.‐B., “Liquid‐Phase Reduction Synthesis of a Cobalt Boride–activated Carbon Composite with Improved Specific Capacitance and Retention Rate as a New Positive Electrode Material for Supercapacitors,” New Journal of Chemistry 43 (2019): 14475–14484, 10.1039/C9NJ02830G. DOI
Lu Q., Xu Y., Mu S., and Li W., “The Effect of Nitrogen and/or Boron Doping on the Electrochemical Performance of Non‐Caking Coal‐Derived Activated Carbons for use as Supercapacitor Electrodes,” New Carbon Materials 32 (2017): 442–450, 10.1016/S1872-5805(17)60133-1. DOI
Wang Y., Wang D., Li Z., et al., “Preparation of Boron/Sulfur‐Codoped Porous Carbon Derived From Biological Wastes and Its Application in a Supercapacitor,” Nanomaterials 12 (2022): 1182, 10.3390/nano12071182. PubMed DOI PMC
Dejpasand M. T., Sharifi S., Saievar‐Iranizad E., Yazdani A., and Rahimi K., “Boron‐ and Nitrogen‐Doped Graphene Quantum Dots with Enhanced Supercapacitance,” Journal of Energy Storage 42 (2021): 103103, 10.1016/j.est.2021.103103. DOI
Bai L., Ge Y., and Bai L., “Boron and Nitrogen Co‐Doped Porous Carbons Synthesized From Polybenzoxazines for High‐Performance Supercapacitors,” Coatings 9 (2019): 657, 10.3390/coatings9100657. DOI
Hao Q., Xia X., Lei W., Wang W., and Qiu J., “Facile Synthesis of Sandwich‐Like Polyaniline/Boron‐Doped Graphene Nano Hybrid for Supercapacitors,” Carbon 81 (2015): 552–563, 10.1016/j.carbon.2014.09.090. DOI
Zhang Y., Xiong C., Xiong Q., et al., “Ni, Ni, Co Bimetallic MOF of Dual‐Controlled by Micro‐Morphology and Unit Cell Structure for Biomass‐Based Self‐Supporting Energy Storage Device,” Rare Metals 44 (2025): 8536–8547, 10.1007/s12598-025-03506-5. DOI
Xiong C., Zheng C., Zhang Z., et al., “Polyaniline@cellulose Nanofibers Multifunctional Composite Material for Supercapacitors, Electromagnetic Interference Shielding and Sensing,” Journal of Materiomics 11, no. 1 (2025): 100841, 10.1016/j.jmat.2024.01.015. DOI