Nitrogen-Doped Borane Cluster Network for High-Performance Supercapacitors Under Universal pH Conditions

. 2026 Feb ; 19 (3) : e202502009.

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41611261

Supercapacitors have garnered considerable attention as next-generation energy storage systems due to their high-power density, rapid charge-discharge kinetics, and long operational lifespan. In this study, we report the design and development of a nitrogen-doped activated borane (ActB), a porous borane cluster-based network, synthesized through the controlled cothermolysis of arachno-B9H13(NEt3) and [Et3NH][nido-B11H14] in toluene. The resulting polymeric materials integrate electron-rich nitrogen sites with the unique 3D boron cluster architecture, offering a synergistic platform for enhanced electrochemical performance. Electrochemical evaluation in a three-electrode system revealed a high specific capacitance of 607 F g-1 at 0.5 A g-1, with remarkable cycling stability, retaining 95% of the initial capacitance after 15,000 charge-discharge cycles. When configured into an asymmetric supercapacitor device using activated carbon as the negative electrode, the system achieved a specific capacitance of 354 F g-1, along with an energy density of 25.6 Wh kg-1 and a power density of 486.2 W kg-1 at a current density of 0.5 A g-1. The device also demonstrated long-term reliability, retaining 88% of its initial capacitance after 15,000 cycles. The outstanding performance is attributed to the integration of redox-active nitrogen functionalities and the inherent stability and tunability of the borane-based framework. This work establishes nitrogen-doped borane cluster polymers as a promising new class of electrode materials for high-performance supercapacitors and broader electrochemical energy storage applications.

Zobrazit více v PubMed

Huang P., Lethien C., Pinaud S., et al., “On‐Chip and Freestanding Elastic Carbon Films for Micro‐Supercapacitors,” Science 351 (2016): 691–695, 10.1126/science.aad3345. PubMed DOI

Kim H.‐S., Cook J. B., Lin H., et al., “Oxygen Vacancies Enhance Pseudocapacitive Charge Storage Properties of MoO PubMed DOI

Chhetri K., Dahal B., Mukhiya T., et al., “Integrated Hybrid of Graphitic Carbon‐Encapsulated CuxO on Multilayered Mesoporous Carbon From Copper MOFs and Polyaniline for Asymmetric Supercapacitor and Oxygen Reduction Reactions,” Carbon 179 (2021): 89–99, 10.1016/j.carbon.2021.04.028. DOI

Fong K. D., Wang T., Kim H.‐K., Kumar R. V., and Smoukov S. K., “Semi‐Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes,” ACS Energy Letters 2 (2017): 2014–2020, 10.1021/acsenergylett.7b00466. PubMed DOI PMC

Li D. D., Chen L., Chen L., et al., “Potassium Gluconate‐Derived N/S Co‐Doped Carbon Nanosheets as Superior Electrode Materials for Supercapacitors and Sodium‐Ion Batteries,” Journal of Power Sources 414 (2019): 308–316, 10.1016/j.jpowsour.2018.12.091. DOI

Yao Y., Feng Q., Huo B., et al., “Facile Self‐Templating Synthesis of Heteroatom‐Doped 3D Porous Carbon Materials From Waste Biomass for Supercapacitors,” Chemical Communications 56 (2020): 11689–11692, 10.1039/d0cc04320f. PubMed DOI

Han J., Zhang L. L., Lee S., et al., “Generation of B‐Doped Graphene Nanoplatelets Using a Solution Process and Their Supercapacitor Applications,” ACS Nano 7 (2012): 19–26, 10.1021/nn3034309. PubMed DOI

Bo X. and Guo L., “Ordered Mesoporous Boron‐Doped Carbons as Metal‐Free Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Solution,” Physical Chemistry Chemical Physics 15 (2013): 2459–2465, 10.1039/C2CP43541A. PubMed DOI

Ding S., Zheng S., Xie M., Peng L., Guo X., and Ding W., “One‐Pot Synthesis of Boron‐Doped Mesoporous Carbon with Boric Acid as a Multifunction Reagent,” Microporous and Mesoporous Materials 142 (2011): 609–613, 10.1016/j.micromeso.2011.01.003. DOI

Su Y., Fan X., Xiong Q., and Xiong C., “Multi‐Dimensional Optimization and Diversified Applications of Carbon Fiber‐Based Flexible Electrode Materials – Synergistic Design of Cross‐Type Supercapacitors and Electrolyte Systems,” Journal of Alloys and Compounds 1038 (2025): 182768, 10.1016/j.jallcom.2025.182768. DOI

Kašpar A., Bashta B., Titlová Š., et al., “Ionic Hyper‐Cross‐Linked Porous Polymer Networks with Achiral and Chiral Pyridinium‐Type Segments,” European Polymer Journal 210 (2024): 112971, 10.1016/j.eurpolymj.2024.112971. DOI

Zhang Z., Liu Z., Xue C., Chen H., Han X., and Ren Y., “Amorphous Porous Organic Polymers Containing Main Group Elements,” Communications Chemistry 6 (2023): 271, 10.1038/s42004-023-01063-5. PubMed DOI PMC

Wang H., Shao Y., Mei S., et al., “Polymer‐Derived Heteroatom‐Doped Porous Carbon Materials,” Chemical Reviews 120 (2020): 9363–9419, 10.1021/acs.chemrev.0c00080. PubMed DOI

Prabu S. and Chiang K.‐Y., “Natural Bio‐Waste‐Derived 3D N/O Self‐Doped Heteroatom Honeycomb‐Like Porous Carbon with Tuned Huge Surface Area for High‐Performance Supercapacitor,” Chemosphere 361 (2024): 142400, 10.1016/j.chemosphere.2024.142400. PubMed DOI

Mollart C. and Trewin A., “Conjugated Microporous Polymer Frameworks for Sustainable Energy Materials – Elucidating the Influence of Solvents on the Porosity Properties for Future Design Principles,” Journal of Materials Chemistry A 12 (2024): 4159–4168, 10.1039/D3TA04866G. DOI

Bhanja P., Mishra S., Manna K., Saha K. Das, and Bhaumik A., “Porous Polymer Bearing Polyphenolic Organic Building Units as a Chemotherapeutic Agent for Cancer Treatment,” ACS Omega 3 (2018): 529–535, 10.1021/acsomega.7b01672. PubMed DOI PMC

Yu S.‐B., Lyu H., Tian J., et al., “A Polycationic Covalent Organic Framework: A Robust Adsorbent for Anionic Dye Pollutants,” Polymer Chemistry 7 (2016): 3392–3397, 10.1039/C6PY00281A. DOI

Giri A., Sahoo A., Dutta T. K., and Patra A., “Cavitand and Molecular Cage‐Based Porous Organic Polymers,” ACS Omega 5 (2020): 28413–28424, 10.1021/acsomega.0c04248. PubMed DOI PMC

Sun Q., Aguila B., Song Y., and Ma S., “Tailored Porous Organic Polymers for Task‐Specific Water Purification,” Accounts of Chemical Research 53 (2020): 812–821, 10.1021/acs.accounts.0c00007. PubMed DOI

Wisser F. M., Eckhardt K., Wisser D., et al., “Tailoring Pore Structure and Properties of Functionalized Porous Polymers by Cyclotrimerization,” Macromolecules 47 (2014): 4210–4216, 10.1021/ma500512j. DOI

Miller K., Gayle J. M., Roy S., et al., “Tunable 2D Conjugated Porous Organic Polymer Films for Precise Molecular Nanofiltration and Optoelectronics,” Small 20 (2024): 2401269, 10.1002/smll.202401269. PubMed DOI

Ozcan A., Fan D., Datta S. J., et al., “Tuning MOF/Polymer Interfacial Pore Geometry in Mixed Matrix Membrane for Upgrading CO PubMed DOI PMC

Xie Y., Wang W., Zhang Z., et al., “Fine‐Tuning the Pore Environment of Ultramicroporous Three‐Dimensional Covalent Organic Frameworks for Efficient One‐Step Ethylene Purification,” Nature Communications 15 (2024): 3008, 10.1038/s41467-024-47377-3. PubMed DOI PMC

Radhakrishnan S., Patra A., Manasa G., Belgami M. A., Jeong S. Mun, and Rout C. S., “Borocarbonitride‐Based Emerging Materials for Supercapacitor Applications: Recent Advances, Challenges, and Future Perspectives,” Advancement of Science 11 (2023): 2305325, 10.1002/advs.202305325. PubMed DOI PMC

Shao W., Wu Z., Liu Y., and Tai G., “Stacked Borophene‐Based Electric Double‐Layer Supercapacitors,” Chemical Engineering Journal 500 (2024): 157258, 10.1016/j.cej.2024.157258. DOI

Ramachandran T., Butt H., Zheng L., and Rezeq M., “A Review of 2D Metal Boride‐Derived Nanostructures: From Synthesis to Energy Storage and Conversion Applications,” Journal of Energy Storage 99 (2024): 113425, 10.1016/j.est.2024.113425. DOI

Spokoyny A. M., Farha O. K., Mulfort K. L., Hupp J. T., and Mirkin C. A., “Porosity Tuning of Carborane‐Based Metal–organic Frameworks (MOFs) via Coordination Chemistry and Ligand Design,” Inorganica Chimica Acta 364 (2010): 266–271, 10.1016/j.ica.2010.08.007. DOI

Kennedy R. D., Krungleviciute V., Clingerman D. J., et al., “Carborane‐Based Metal–organic Framework with High Methane and Hydrogen Storage Capacities,” Chemistry of Materials 25 (2013): 3539–3543, 10.1021/cm4020942. DOI

Gan L., Andres‐Garcia E., Espallargas G. Mínguez, and Planas J. G., “Adsorptive Separation of CO2 by a Hydrophobic Carborane‐Based Metal–organic Framework under Humid Conditions,” ACS Applied Materials & Interfaces 15 (2023): 5309–5316, 10.1021/acsami.2c20373. PubMed DOI PMC

Gan L., Chidambaram A., Fonquernie P. G., et al., “A Highly Water‐Stable PubMed DOI

Boldog I., Bereciartua P. J., Bulánek R., et al., “10‐Vertex DOI

Zhu Y., Yang J., Qiu X., et al., “Amphiphilic Carborane‐Based Covalent Organic Frameworks as Efficient Polysulfide Nano‐Trappers for Lithium–sulfur Batteries,” ACS Applied Materials & Interfaces 13 (2021): 60373–60383, 10.1021/acsami.1c19705. PubMed DOI

Li M., Yu J., Xue Y., et al., “Preparation of Carborane‐Tailored Covalent Organic Frameworks by a Postsynthetic Modification Strategy as a Barrier to Polysulfide in Lithium–sulfur Batteries,” ACS Applied Materials & Interfaces 15 (2023): 2922–2932, 10.1021/acsami.2c18407. PubMed DOI

Xu X., Cui Q., Chen H., and Huang N., “Carborane‐Based Three‐Dimensional Covalent Organic Frameworks,” Journal of the American Chemical Society 145 (2023): 24202–24209, 10.1021/jacs.3c08541. PubMed DOI

Bůžek D., Škoch K., Ondrušová S., et al., “Activated Borane” – a Porous Borane Cluster Network as an Effective Adsorbent for Removing Organic Pollutants,” Chemistry – A European Journal 28 (2022): e202201885, 10.1002/chem.202201885. PubMed DOI

Lamač M., Urbán B., Horáček M., et al., “Activated Borane”: A Porous Borane Cluster Polymer as an Efficient Lewis Acid‐Based Catalyst,” ACS Catalysis 13 (2023): 14614–14626, 10.1021/acscatal.3c04011. PubMed DOI PMC

Udnoor A., Urbán B., Škoch K., et al., “Catalytic Dehalogenation with Activated Borane, a Porous Borane Cluster Polymer,” Catalysis Science & Technology 14 (2024): 4458–4465, 10.1039/D4CY00732H. DOI

Tok O. L., Holub J., Růžička A., Růžičková Z., and Štíbr B., “Direct Synthesis of Dicarbollides,” New Journal of Chemistry 42 (2018): 8524–8529, 10.1039/C8NJ00819A. DOI

Demel J., Kloda M., Lang K., et al., “Direct Phenylation of PubMed DOI

Harazono T., Hiroyama Y., and Watanabe T., “Solid State NMR of DOI

Mauri F., Vast N., and Pickard C. J., “Atomic Structure of Icosahedral B4C Boron Carbide From a First Principles Analysis of NMR Spectra,” Physical Review Letters 87 (2001): 085506, 10.1103/PhysRevLett.87.085506. PubMed DOI

Duperrier S., Gervais C., Bernard S., Cornu D., Babonneau F., and Miele P., “Controlling the Chemistry, Morphology and Structure of Boron Nitride‐Based Ceramic Fibers through a Comprehensive Mechanistic Study of the Reactivity of Spinnable Polymers with Ammonia,” Journal of Materials Chemistry 16 (2006): 3126–3135, 10.1039/B604482D. DOI

Kobayashi T., Gupta S., Caporini M. A., Pecharsky V. K., and Pruski M., “Mechanism of Solid‐State Thermolysis of Ammonia Borane: A 15N NMR Study Using Fast Magic‐Angle Spinning and Dynamic Nuclear Polarization,” The Journal of Physical Chemistry C 118 (2014): 19548–19555, 10.1021/jp504328x. DOI

Stubbs N. E., Jurca T., Leitao E. M., Woodall C. H., and Manners I., “Polyaminoborane Main Chain Scission Using N‐Heterocyclic Carbenes; Formation of Donor‐Stabilised Monomeric Aminoboranes,” Chemical Communications 49 (2013): 9098–9100, 10.1039/C3CC44373F. PubMed DOI

Sorochkina K., Zhivonitko V. V., Chernichenko K., Telkki V.‐V., Repo T., and Koptyug I. V., “Spontaneous 15N Nuclear Spin Hyperpolarization in Metal‐Free Activation of Parahydrogen by Molecular Tweezers,” The Journal of Physical Chemistry Letters 9 (2018): 903–907, 10.1021/acs.jpclett.7b03433. PubMed DOI PMC

Kozlova S. G. and Tkachev S. V., “1H NMR Spectra of Triethylamine Binary Aqueous Solutions as Functions of Concentration and Temperature: The Triethylamine‐Rich Phase,” Journal of Molecular Liquids 343 (2021): 117684, 10.1016/j.molliq.2021.117684. DOI

Matsoso B. J., Ranganathan K., Mutuma B. K., Lerotholi T., Jones G., and Coville N. J., “Synthesis and Characterization of Boron Carbon Oxynitride Films with Tunable Composition Using Methane, Boric Acid and Ammonia,” New Journal of Chemistry 41 (2017): 9497–9504, 10.1039/C7NJ01886J. DOI

Wang Y., Wang C., Wang Y., Liu H., and Huang Z., “Boric Acid Assisted Reduction of Graphene Oxide: A Promising Material for Sodium‐Ion Batteries,” ACS Applied Materials & Interfaces 8 (2016): 18860–18866, 10.1021/acsami.6b04774. PubMed DOI

Cui X., Zhang L., Zhang J., et al., “A Novel Metal‐Organic Layered Material with Superior Supercapacitive Performance through Ultrafast and Reversible Tetraethylammonium Intercalation,” Nano Energy 59 (2019): 102–109, 10.1016/j.nanoen.2019.02.034. DOI

Liu B., Liu Y., Chen H., Yang M., and Li H., “Oxygen and Nitrogen Co‐Doped Porous Carbon Nanosheets Derived From DOI

Vinu M., Prabu S., Virgin A., Chiang K.‐Y., Srivastava B., and Ranjithkumar R., “Pre‐Carbonization of B/N/O Heteroatom‐Codoped Hierarchical Porous Carbon Spheres Derived From Bio‐Waste Orange Peel for High‐Performance Supercapacitors,” Materials Research Bulletin 189 (2025): 113441, 10.1016/j.materresbull.2025.113441. DOI

Shore S. G., “Nido‐ and Arachno‐Boron Hydrides,” inBoron Hydride Chemistry, ed. Muetterties E. L. (Academic Press, 1975), 79–174.

Amoureux J.‐P., Fernandez C., and Steuernagel S., “Z‐Filtering in MQMAS NMR,” Journal of Magnetic Resonance, Series A 123 (1996): 116–118, 10.1006/jmra.1996.0221 and references therein. PubMed DOI

Equbal A., Bjerring M., Madhu P. K., and Nielsen N. Chr, “Improving Spectral Resolution in Biological Solid‐State NMR Using Phase‐Alternated rCW Heteronuclear Decoupling,” Chemical Physics Letters 635 (2015): 339–344, 10.1016/j.cplett.2015.07.008. DOI

Brus J., “Heating of Samples Induced by Fast Magic‐Angle Spinning,” Solid State Nuclear Magnetic Resonance 16 (2000): 151–160, 10.1016/S0926-2040(00)00061-8. PubMed DOI

Prakash D. and Manivannan S., “N, B Co‐Doped and Crumpled Graphene Oxide Pseudocapacitive Electrode for High Energy Supercapacitor,” Surfaces and Interfaces 23 (2021): 101025, 10.1016/j.surfin.2021.101025. DOI

Zhao Z. and Xie Y., “Electrochemical Supercapacitor Performance of Boron and Nitrogen Co‐Doped Porous Carbon Nanowires,” Journal of Power Sources 400 (2018): 264–276, 10.1016/j.jpowsour.2018.08.032. DOI

Wu Z., Winter A., Chen L., et al., “Three‐Dimensional Nitrogen and Boron Co‐Doped Graphene for High‐Performance All‐Solid‐State Supercapacitors,” Advanced Materials 24 (2012): 5130–5135, 10.1002/adma.201201948. PubMed DOI

Hao J., Wang J., Qin S., Liu D., Li Y., and Lei W., “B/N Co‐Doped Carbon Nanosphere Frameworks as High‐Performance Electrodes for Supercapacitors,” Journal of Materials Chemistry A 6 (2018): 8053–8058, 10.1039/C8TA00683K. DOI

Tabassum H., Mahmood A., Wang Q., et al., “Hierarchical Cobalt Hydroxide and B/N Co‐Doped Graphene Nanohybrids Derived From Metal–organic Frameworks for High Energy Density Asymmetric Supercapacitors,” Scientific Reports 7 (2017): 43084, 10.1038/srep43084. PubMed DOI PMC

Li R., Qin C., Zhang X., Lin Z., Lv S., and Jiang X., “Boron/Nitrogen Co‐Doped Carbon Synthesized From Waterborne Polyurethane and Graphene Oxide Composite for Supercapacitors,” RSC Advances 9 (2019): 1679–1689, 10.1039/C8RA09043B-10.1038/srep43084. PubMed DOI PMC

Hou J.‐F., Gao J.‐F., and Kong L.‐B., “Liquid‐Phase Reduction Synthesis of a Cobalt Boride–activated Carbon Composite with Improved Specific Capacitance and Retention Rate as a New Positive Electrode Material for Supercapacitors,” New Journal of Chemistry 43 (2019): 14475–14484, 10.1039/C9NJ02830G. DOI

Lu Q., Xu Y., Mu S., and Li W., “The Effect of Nitrogen and/or Boron Doping on the Electrochemical Performance of Non‐Caking Coal‐Derived Activated Carbons for use as Supercapacitor Electrodes,” New Carbon Materials 32 (2017): 442–450, 10.1016/S1872-5805(17)60133-1. DOI

Wang Y., Wang D., Li Z., et al., “Preparation of Boron/Sulfur‐Codoped Porous Carbon Derived From Biological Wastes and Its Application in a Supercapacitor,” Nanomaterials 12 (2022): 1182, 10.3390/nano12071182. PubMed DOI PMC

Dejpasand M. T., Sharifi S., Saievar‐Iranizad E., Yazdani A., and Rahimi K., “Boron‐ and Nitrogen‐Doped Graphene Quantum Dots with Enhanced Supercapacitance,” Journal of Energy Storage 42 (2021): 103103, 10.1016/j.est.2021.103103. DOI

Bai L., Ge Y., and Bai L., “Boron and Nitrogen Co‐Doped Porous Carbons Synthesized From Polybenzoxazines for High‐Performance Supercapacitors,” Coatings 9 (2019): 657, 10.3390/coatings9100657. DOI

Hao Q., Xia X., Lei W., Wang W., and Qiu J., “Facile Synthesis of Sandwich‐Like Polyaniline/Boron‐Doped Graphene Nano Hybrid for Supercapacitors,” Carbon 81 (2015): 552–563, 10.1016/j.carbon.2014.09.090. DOI

Zhang Y., Xiong C., Xiong Q., et al., “Ni, Ni, Co Bimetallic MOF of Dual‐Controlled by Micro‐Morphology and Unit Cell Structure for Biomass‐Based Self‐Supporting Energy Storage Device,” Rare Metals 44 (2025): 8536–8547, 10.1007/s12598-025-03506-5. DOI

Xiong C., Zheng C., Zhang Z., et al., “Polyaniline@cellulose Nanofibers Multifunctional Composite Material for Supercapacitors, Electromagnetic Interference Shielding and Sensing,” Journal of Materiomics 11, no. 1 (2025): 100841, 10.1016/j.jmat.2024.01.015. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...