Arsenic efflux mechanisms in ectomycorrhizal mushrooms Hebeloma bulbiferum and Hebeloma sinapizans
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
25-16582K
Grantová Agentura České Republiky
No. A2_FPBT_2024_001
Vysoká Škola Chemicko-technologická v Praze
RVO61389005
Akademie Věd České Republiky
PubMed
41618050
PubMed Central
PMC12860867
DOI
10.1007/s00253-026-13710-7
PII: 10.1007/s00253-026-13710-7
Knihovny.cz E-zdroje
- Klíčová slova
- Agaricales, ACR3 transporters, Arsenic transport, Fungi, Mushrooms,
- MeSH
- arsen * metabolismus MeSH
- arseničnany metabolismus MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- fungální proteiny genetika metabolismus MeSH
- Hebeloma * metabolismus genetika MeSH
- membránové transportní proteiny * genetika metabolismus MeSH
- mykorhiza * metabolismus genetika MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arsen * MeSH
- arsenic acid MeSH Prohlížeč
- arseničnany MeSH
- fungální proteiny MeSH
- membránové transportní proteiny * MeSH
Arsenic (As) is a toxic metalloid widespread in the environment, and many organisms have evolved mechanisms to mitigate its toxic effects. Bioinformatic analyses revealed that acr3 genes are predominantly distributed in mushrooms, highlighting their evolutionary and functional importance in eukaryotic arsenic metabolism. In this study, two homologous genes, HbACR3 and HsACR3, from the mushrooms Hebeloma bulbiferum and Hebeloma sinapizans were identified and functionally characterized. Both encode 399-amino-acid membrane proteins showing 99% sequence identity to each other and substantial similarity to previously characterized ACR3-type arsenite transporters from plants, yeasts, and bacteria. Heterologous expression of HbACR3 and HsACR3 in a Saccharomyces cerevisiae arr3Δ mutant restored resistance to arsenite and arsenate and significantly reduced intracellular arsenic accumulation. Fluorescence microscopy of GFP-tagged HbACR3 and HsACR3 confirmed their localization to the plasma membrane, consistent with an efflux transport function. Exposure of H. bulbiferum and H. sinapizans mycelia to arsenate led to a significant but differential transcriptional upregulation of both genes. This work provides new insight into the evolution, distribution, and physiological significance of ACR3 transporters in eukaryotic arsenic homeostasis. KEY POINTS: Acr3 genes are widespread in fungi, indicating a key role in arsenic detoxification. HbACR3 and HsACR3 reduce cellular arsenic and confer As(III) tolerance. Arsenate exposure strongly induces HbACR3 and HsACR3 gene expression.
Czech Academy of Sciences Institute of Geology Rozvojová 269 16500 Prague 6 Prague Czech Republic
Czech Academy of Sciences Nuclear Physics Institute Hlavní 130 25068 Husinec Řež Czech Republic
Zobrazit více v PubMed
Achour A, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137. 10.1016/j.resmic.2006.11.006 PubMed DOI
Ali W, Isner JC, Isayenkov SV, Liu W, Zhao FJ, Maathuis FJM (2012) Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytol 194:716–723. 10.1111/j.1469-8137.2012.04092.x PubMed DOI
Biswas S, Ganesan M (2024) Current perspectives of ACR3 (arsenite efflux system) toward the reduction of arsenic accumulation in plants. J Crop Sci Biotechnol 27:313–329. 10.1007/s12892-023-00231-2 DOI
Borovička J, Braeuer S, Walenta M, Hršelová H, Leonhardt T, Sácký J, Kaňa A, Goessler W (2022) A new mushroom hyperaccumulator: cadmium and arsenic in the ectomycorrhizal basidiomycete PubMed DOI
Braeuer S, Goessler W (2019) Arsenic species in mushrooms, with a focus on analytical methods for their determination - a critical review. Anal Chim Acta 1073:1–21. 10.1016/j.aca.2019.04.004 PubMed DOI
Burki F, Roger AJ, Brown MW, Simpson AGB (2020) The new tree of eukaryotes. Trends Ecol Evol 35(1):43–55. 10.1016/j.tree.2019.08.008 PubMed DOI
Castillo R, Saier MH (2010) Functional promiscuity of homologues of the bacterial ArsA ATPases. Int J Microbiol 2010:187373. 10.1155/2010/187373 PubMed DOI PMC
Chen J, Madegowda M, Bhattacharjee H, Rosen BP (2015) ArsP: a methylarsenite efflux permease. Mol Microbiol 98(4):625–635. 10.1111/mmi.13145 PubMed DOI PMC
Chen J, Yoshinaga M, Garbinski LD, Rosen BP (2016) Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance. Mol Microbiol 100(6):945–953. 10.1111/mmi.13371 PubMed DOI PMC
Chen Y, Hua CY, Jia MR, Fu JW, Liu X, Han YH, Liu Y, Rathinasabapathi B, Cao Y, Ma LQ (2017) Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environ Sci Technol 51(18):10387–10395. 10.1021/acs.est.7b03369 PubMed DOI
Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci U S A 103(14):5413–5418. 10.1073/pnas.0509770102 PubMed DOI PMC
Doré J, Perraud M, Dieryckx C, Kohler A, Morin E, Henrissat B, Lindquist E, Zimmermann SD, Girard V, Kuo A, Grigoriev IV, Martin F, Marmeisse R, Gay G (2015) Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete PubMed DOI
Doré J, Kohler A, Dubost A, Hundley H, Singan V, Peng Y, Kuo A, Grigoriev IV, Martin F, Marmeisse R, Gay G (2017) The ectomycorrhizal basidiomycete PubMed DOI
Duan G, Kamiya T, Ishikawa S, Arao T, Fujiwara T (2012) Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol 53(1):154–163. 10.1093/pcp/pcr161 PubMed DOI
Fu HL, Meng Y, Ordóñez E, Villadangos AF, Bhattacharjee H, Gil JA, Mateos LM, Rosen BP (2009) Properties of arsenite efflux permeases (Acr3) from Alkaliphilus metalliredigens and Corynebacterium glutamicum. J Biol Chem 284(30):19887–19895. 10.1074/jbc.M109.011882 PubMed DOI PMC
Garbinski LD, Rosen BP, Chen J (2019) Pathways of arsenic uptake and efflux. Environ Int 126:585–597. 10.1016/j.envint.2019.02.058 PubMed DOI PMC
Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42(D1):D699–D704. 10.1093/nar/gkt1183 PubMed DOI PMC
Hibbett DS, Bauer R, Binder M, Giachini AJ, Hosaka K, Justo A, Larsson E, Larsson KH, Lawrey JD, Miettinen O, Nagy LG, Nilsson RH, Weiss M, Thorn RG (2014). 14
Hickey PC, Swift SR, Roca MG, Read ND (2004). Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. In
Hložková K, Matěnová M, Žáčková P, Strnad H, Hršelová H, Hroudová M, Kotrba P (2016) Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus PubMed DOI
Hotaling S, Kelley JL, Frandsen PB (2021) Toward a genome sequence for every animal: where are we now? Proc Natl Acad Sci U S A. 10.1073/pnas.2109019118 PubMed DOI PMC
Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22(6):2045–2057. 10.1105/tpc.109.069773 PubMed DOI PMC
Jia MR, Tang N, Cao Y, Chen Y, Han YH, Ma LQ (2019) Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: characterization and genome analysis. Chemosphere 218:1061–1070. 10.1016/j.chemosphere.2018.11.145 PubMed DOI
Kaňa A, Sadowska M, Kvíčala J, Mestek O (2020) Simultaneous determination of oxo- and thio-arsenic species using HPLC-ICP-MS. J Food Compos Anal 92:103562. 10.1016/j.jfca.2020.103562 DOI
Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Högberg N, Johansson T, Khouja HR, LaButti K, Lahrmann U, Levasseur A, Lindquist E, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett KM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Mycorrhizal Genomics Initiative Consortium, Tunlid A, Grigoriev IV, Hibbett DS, Martin F (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47(4):410–415. 10.1038/ng.3223 PubMed DOI
Liu J, Pei R, Liu R, Jing C, Liu W (2025) Arsenic methylation and microbial communities in paddy soils under alternating anoxic and oxic conditions. J Environ Sci (China) 148:468–475. 10.1016/j.jes.2023.10.030 PubMed DOI
Maciaszczyk-Dziubinska E, Migocka M, Wysocki R (2011) Acr3p is a plasma membrane antiporter that catalyzes As(III)/H+ and Sb(III)/H+ exchange in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes 1808(7):1855–1859. 10.1016/j.bbamem.2011.03.014 PubMed DOI
Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R (2012) Arsenic and antimony transporters in eukaryotes. Int J Mol Sci 13(3):3527–3548. 10.3390/ijms13033527 PubMed DOI PMC
Mansour NM, Sawhney M, Tamang DG, Vogl C, Saier MH Jr. (2007) The bile/arsenite/riboflavin transporter (BART) superfamily. FEBS J 274(3):612–629. 10.1111/j.1742-4658.2006.05627.x PubMed
Markowska K, Maciaszczyk-Dziubinska E, Migocka M, Wawrzycka D, Wysocki R (2015) Identification of critical residues for transport activity of Acr3p, the Saccharomyces cerevisiae As(III)/H+ antiporter. Mol Microbiol 98(1):162–174. 10.1111/mmi.13113 PubMed DOI
Marks RA, Hotaling S, Frandsen PB, VanBuren R (2021) Representation and participation across 20 years of plant genome sequencing. Nat Plants 7(12):1571–1578. 10.1038/s41477-021-01031-8 PubMed DOI PMC
Mizio K, Wawrzycka D, Staszewski J, Wysocki R, Maciaszczyk-Dziubinska E (2023) Identification of amino acid substitutions that toggle substrate selectivity of the yeast arsenite transporter Acr3. J Hazard Mater 456:131653. 10.1016/j.jhazmat.2023.131653 PubMed DOI
Mukhopadhyay R, Rosen BP (1998) Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol Lett 168(1):127–136. 10.1111/j.1574-6968.1998.tb13265.x PubMed DOI
Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156(1):119–122. 10.1016/0378-1119(95)00037-7 PubMed DOI
Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator PubMed DOI
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45. 10.1093/nar/29.9.e45 PubMed DOI PMC
Popov M, Zemanová V, Sácký J, Pavlík M, Leonhardt T, Matoušek T, Kaňa A, Pavlíková D, Kotrba P (2021) Arsenic accumulation and speciation in two cultivars of PubMed DOI
Sácký J, Liščáková V, Šnábl J, Zelenka J, Borovička J, Leonhardt T, Kotrba P (2025) Functional analysis of two genes coding for distinct cation diffusion facilitators of the cadmium-accumulating fungus PubMed DOI
Shen S, Li XF, Cullen WR, Weinfeld M, Le XC (2013) Arsenic binding to proteins. Chem Rev 113(10):7769–7792. 10.1021/cr300015c PubMed DOI PMC
Shen Z, Luangtongkum T, Qiang Z, Jeon B, Wang L, Zhang Q (2014) Identification of a novel membrane transporter mediating resistance to organic arsenic in PubMed DOI PMC
Shi K, Li C, Rensing C, Dai X, Fan X, Wang G (2018) Efflux transporter ArsK is responsible for bacterial resistance to arsenite, antimonite, trivalent roxarsone, and methylarsenite. Appl Environ Microbiol. 10.1128/aem.01842-18 PubMed DOI PMC
Song W, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107(49):21187–21192. 10.1073/pnas.1013964107 PubMed DOI PMC
Stijve T, Vellinga EC, Herrmann A (1990) Arsenic accumulation in some higher fungi. Persoonia Mol Phylogeny Evol Fungi 14(2):161–166
Sun J, Ma L, Yang Z, Lee H, Wang L (2015) Speciation and determination of bioavailable arsenic species in soil samples by one-step solvent extraction and high-performance liquid chromatography with inductively coupled plasma mass spectrometry. J Sep Sci 38(6):943–950. 10.1002/jssc.201401221 PubMed DOI
Thomas DJ, Nava GM, Cai SY, Boyer JL, Hernández-Zavala A, Gaskins HR (2010) Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate PubMed DOI PMC
Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128(5):779–792. 10.1083/jcb.128.5.779 PubMed DOI PMC
Villadangos AF, Fu HL, Gil JA, Messens J, Rosen BP, Mateos LM (2012) Efflux permease CgAcr3-1 of PubMed DOI PMC
Wenzel WW (2013). Arsenic. In B. J. Alloway (Ed.),
Wu J, Rosen BP (1991) The ArsR protein is a trans-acting regulatory protein. Mol Microbiol 5(6):1331–1336. 10.1111/j.1365-2958.1991.tb00779.x PubMed DOI
Wysocki R, Bobrowicz P, Ułaszewski S (1997) The PubMed DOI
Wysocki R, Fortier PK, Maciaszczyk E, Thorsen M, Leduc A, Odhagen A, Owsianik G, Ulaszewski S, Ramotar D, Tamás MJ (2004) Transcriptional ac PubMed DOI PMC
Yang Y, Wu S, Lilley RM, Zhang R (2015) The diversity of membrane transporters encoded in bacterial arsenic-resistance operons. PeerJ 3:e943. 10.7717/peerj.943 PubMed PMC