Arsenic efflux mechanisms in ectomycorrhizal mushrooms Hebeloma bulbiferum and Hebeloma sinapizans

. 2026 Jan 30 ; 110 (1) : 52. [epub] 20260130

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41618050

Grantová podpora
25-16582K Grantová Agentura České Republiky
No. A2_FPBT_2024_001 Vysoká Škola Chemicko-technologická v Praze
RVO61389005 Akademie Věd České Republiky

Odkazy

PubMed 41618050
PubMed Central PMC12860867
DOI 10.1007/s00253-026-13710-7
PII: 10.1007/s00253-026-13710-7
Knihovny.cz E-zdroje

Arsenic (As) is a toxic metalloid widespread in the environment, and many organisms have evolved mechanisms to mitigate its toxic effects. Bioinformatic analyses revealed that acr3 genes are predominantly distributed in mushrooms, highlighting their evolutionary and functional importance in eukaryotic arsenic metabolism. In this study, two homologous genes, HbACR3 and HsACR3, from the mushrooms Hebeloma bulbiferum and Hebeloma sinapizans were identified and functionally characterized. Both encode 399-amino-acid membrane proteins showing 99% sequence identity to each other and substantial similarity to previously characterized ACR3-type arsenite transporters from plants, yeasts, and bacteria. Heterologous expression of HbACR3 and HsACR3 in a Saccharomyces cerevisiae arr3Δ mutant restored resistance to arsenite and arsenate and significantly reduced intracellular arsenic accumulation. Fluorescence microscopy of GFP-tagged HbACR3 and HsACR3 confirmed their localization to the plasma membrane, consistent with an efflux transport function. Exposure of H. bulbiferum and H. sinapizans mycelia to arsenate led to a significant but differential transcriptional upregulation of both genes. This work provides new insight into the evolution, distribution, and physiological significance of ACR3 transporters in eukaryotic arsenic homeostasis. KEY POINTS: Acr3 genes are widespread in fungi, indicating a key role in arsenic detoxification. HbACR3 and HsACR3 reduce cellular arsenic and confer As(III) tolerance. Arsenate exposure strongly induces HbACR3 and HsACR3 gene expression.

Zobrazit více v PubMed

Achour A, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137. 10.1016/j.resmic.2006.11.006 PubMed DOI

Ali W, Isner JC, Isayenkov SV, Liu W, Zhao FJ, Maathuis FJM (2012) Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytol 194:716–723. 10.1111/j.1469-8137.2012.04092.x PubMed DOI

Biswas S, Ganesan M (2024) Current perspectives of ACR3 (arsenite efflux system) toward the reduction of arsenic accumulation in plants. J Crop Sci Biotechnol 27:313–329. 10.1007/s12892-023-00231-2 DOI

Borovička J, Braeuer S, Walenta M, Hršelová H, Leonhardt T, Sácký J, Kaňa A, Goessler W (2022) A new mushroom hyperaccumulator: cadmium and arsenic in the ectomycorrhizal basidiomycete PubMed DOI

Braeuer S, Goessler W (2019) Arsenic species in mushrooms, with a focus on analytical methods for their determination - a critical review. Anal Chim Acta 1073:1–21. 10.1016/j.aca.2019.04.004 PubMed DOI

Burki F, Roger AJ, Brown MW, Simpson AGB (2020) The new tree of eukaryotes. Trends Ecol Evol 35(1):43–55. 10.1016/j.tree.2019.08.008 PubMed DOI

Castillo R, Saier MH (2010) Functional promiscuity of homologues of the bacterial ArsA ATPases. Int J Microbiol 2010:187373. 10.1155/2010/187373 PubMed DOI PMC

Chen J, Madegowda M, Bhattacharjee H, Rosen BP (2015) ArsP: a methylarsenite efflux permease. Mol Microbiol 98(4):625–635. 10.1111/mmi.13145 PubMed DOI PMC

Chen J, Yoshinaga M, Garbinski LD, Rosen BP (2016) Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance. Mol Microbiol 100(6):945–953. 10.1111/mmi.13371 PubMed DOI PMC

Chen Y, Hua CY, Jia MR, Fu JW, Liu X, Han YH, Liu Y, Rathinasabapathi B, Cao Y, Ma LQ (2017) Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environ Sci Technol 51(18):10387–10395. 10.1021/acs.est.7b03369 PubMed DOI

Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci U S A 103(14):5413–5418. 10.1073/pnas.0509770102 PubMed DOI PMC

Doré J, Perraud M, Dieryckx C, Kohler A, Morin E, Henrissat B, Lindquist E, Zimmermann SD, Girard V, Kuo A, Grigoriev IV, Martin F, Marmeisse R, Gay G (2015) Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete PubMed DOI

Doré J, Kohler A, Dubost A, Hundley H, Singan V, Peng Y, Kuo A, Grigoriev IV, Martin F, Marmeisse R, Gay G (2017) The ectomycorrhizal basidiomycete PubMed DOI

Duan G, Kamiya T, Ishikawa S, Arao T, Fujiwara T (2012) Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol 53(1):154–163. 10.1093/pcp/pcr161 PubMed DOI

Fu HL, Meng Y, Ordóñez E, Villadangos AF, Bhattacharjee H, Gil JA, Mateos LM, Rosen BP (2009) Properties of arsenite efflux permeases (Acr3) from Alkaliphilus metalliredigens and Corynebacterium glutamicum. J Biol Chem 284(30):19887–19895. 10.1074/jbc.M109.011882 PubMed DOI PMC

Garbinski LD, Rosen BP, Chen J (2019) Pathways of arsenic uptake and efflux. Environ Int 126:585–597. 10.1016/j.envint.2019.02.058 PubMed DOI PMC

Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42(D1):D699–D704. 10.1093/nar/gkt1183 PubMed DOI PMC

Hibbett DS, Bauer R, Binder M, Giachini AJ, Hosaka K, Justo A, Larsson E, Larsson KH, Lawrey JD, Miettinen O, Nagy LG, Nilsson RH, Weiss M, Thorn RG (2014). 14

Hickey PC, Swift SR, Roca MG, Read ND (2004). Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. In

Hložková K, Matěnová M, Žáčková P, Strnad H, Hršelová H, Hroudová M, Kotrba P (2016) Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus PubMed DOI

Hotaling S, Kelley JL, Frandsen PB (2021) Toward a genome sequence for every animal: where are we now? Proc Natl Acad Sci U S A. 10.1073/pnas.2109019118 PubMed DOI PMC

Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22(6):2045–2057. 10.1105/tpc.109.069773 PubMed DOI PMC

Jia MR, Tang N, Cao Y, Chen Y, Han YH, Ma LQ (2019) Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: characterization and genome analysis. Chemosphere 218:1061–1070. 10.1016/j.chemosphere.2018.11.145 PubMed DOI

Kaňa A, Sadowska M, Kvíčala J, Mestek O (2020) Simultaneous determination of oxo- and thio-arsenic species using HPLC-ICP-MS. J Food Compos Anal 92:103562. 10.1016/j.jfca.2020.103562 DOI

Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Högberg N, Johansson T, Khouja HR, LaButti K, Lahrmann U, Levasseur A, Lindquist E, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett KM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Mycorrhizal Genomics Initiative Consortium, Tunlid A, Grigoriev IV, Hibbett DS, Martin F (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47(4):410–415. 10.1038/ng.3223 PubMed DOI

Liu J, Pei R, Liu R, Jing C, Liu W (2025) Arsenic methylation and microbial communities in paddy soils under alternating anoxic and oxic conditions. J Environ Sci (China) 148:468–475. 10.1016/j.jes.2023.10.030 PubMed DOI

Maciaszczyk-Dziubinska E, Migocka M, Wysocki R (2011) Acr3p is a plasma membrane antiporter that catalyzes As(III)/H+ and Sb(III)/H+ exchange in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes 1808(7):1855–1859. 10.1016/j.bbamem.2011.03.014 PubMed DOI

Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R (2012) Arsenic and antimony transporters in eukaryotes. Int J Mol Sci 13(3):3527–3548. 10.3390/ijms13033527 PubMed DOI PMC

Mansour NM, Sawhney M, Tamang DG, Vogl C, Saier MH Jr. (2007) The bile/arsenite/riboflavin transporter (BART) superfamily. FEBS J 274(3):612–629. 10.1111/j.1742-4658.2006.05627.x PubMed

Markowska K, Maciaszczyk-Dziubinska E, Migocka M, Wawrzycka D, Wysocki R (2015) Identification of critical residues for transport activity of Acr3p, the Saccharomyces cerevisiae As(III)/H+ antiporter. Mol Microbiol 98(1):162–174. 10.1111/mmi.13113 PubMed DOI

Marks RA, Hotaling S, Frandsen PB, VanBuren R (2021) Representation and participation across 20 years of plant genome sequencing. Nat Plants 7(12):1571–1578. 10.1038/s41477-021-01031-8 PubMed DOI PMC

Mizio K, Wawrzycka D, Staszewski J, Wysocki R, Maciaszczyk-Dziubinska E (2023) Identification of amino acid substitutions that toggle substrate selectivity of the yeast arsenite transporter Acr3. J Hazard Mater 456:131653. 10.1016/j.jhazmat.2023.131653 PubMed DOI

Mukhopadhyay R, Rosen BP (1998) Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol Lett 168(1):127–136. 10.1111/j.1574-6968.1998.tb13265.x PubMed DOI

Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156(1):119–122. 10.1016/0378-1119(95)00037-7 PubMed DOI

Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator PubMed DOI

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45. 10.1093/nar/29.9.e45 PubMed DOI PMC

Popov M, Zemanová V, Sácký J, Pavlík M, Leonhardt T, Matoušek T, Kaňa A, Pavlíková D, Kotrba P (2021) Arsenic accumulation and speciation in two cultivars of PubMed DOI

Sácký J, Liščáková V, Šnábl J, Zelenka J, Borovička J, Leonhardt T, Kotrba P (2025) Functional analysis of two genes coding for distinct cation diffusion facilitators of the cadmium-accumulating fungus PubMed DOI

Shen S, Li XF, Cullen WR, Weinfeld M, Le XC (2013) Arsenic binding to proteins. Chem Rev 113(10):7769–7792. 10.1021/cr300015c PubMed DOI PMC

Shen Z, Luangtongkum T, Qiang Z, Jeon B, Wang L, Zhang Q (2014) Identification of a novel membrane transporter mediating resistance to organic arsenic in PubMed DOI PMC

Shi K, Li C, Rensing C, Dai X, Fan X, Wang G (2018) Efflux transporter ArsK is responsible for bacterial resistance to arsenite, antimonite, trivalent roxarsone, and methylarsenite. Appl Environ Microbiol. 10.1128/aem.01842-18 PubMed DOI PMC

Song W, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107(49):21187–21192. 10.1073/pnas.1013964107 PubMed DOI PMC

Stijve T, Vellinga EC, Herrmann A (1990) Arsenic accumulation in some higher fungi. Persoonia Mol Phylogeny Evol Fungi 14(2):161–166

Sun J, Ma L, Yang Z, Lee H, Wang L (2015) Speciation and determination of bioavailable arsenic species in soil samples by one-step solvent extraction and high-performance liquid chromatography with inductively coupled plasma mass spectrometry. J Sep Sci 38(6):943–950. 10.1002/jssc.201401221 PubMed DOI

Thomas DJ, Nava GM, Cai SY, Boyer JL, Hernández-Zavala A, Gaskins HR (2010) Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate PubMed DOI PMC

Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128(5):779–792. 10.1083/jcb.128.5.779 PubMed DOI PMC

Villadangos AF, Fu HL, Gil JA, Messens J, Rosen BP, Mateos LM (2012) Efflux permease CgAcr3-1 of PubMed DOI PMC

Wenzel WW (2013). Arsenic. In B. J. Alloway (Ed.),

Wu J, Rosen BP (1991) The ArsR protein is a trans-acting regulatory protein. Mol Microbiol 5(6):1331–1336. 10.1111/j.1365-2958.1991.tb00779.x PubMed DOI

Wysocki R, Bobrowicz P, Ułaszewski S (1997) The PubMed DOI

Wysocki R, Fortier PK, Maciaszczyk E, Thorsen M, Leduc A, Odhagen A, Owsianik G, Ulaszewski S, Ramotar D, Tamás MJ (2004) Transcriptional ac PubMed DOI PMC

Yang Y, Wu S, Lilley RM, Zhang R (2015) The diversity of membrane transporters encoded in bacterial arsenic-resistance operons. PeerJ 3:e943. 10.7717/peerj.943 PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...