Neurofilament Light Chain Concentration in the Prediction of Treatment Response in Multiple Sclerosis
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
1157717 Kalincik
National Health and Medical Research Council
PubMed
41622995
PubMed Central
PMC12862443
DOI
10.1111/ene.70505
Knihovny.cz E-zdroje
- Klíčová slova
- multiple sclerosis, neurofilament light, prediction, principal component analysis, treatment response,
- MeSH
- biologické markery krev MeSH
- dospělí MeSH
- fingolimod hydrochlorid terapeutické užití MeSH
- imunologické faktory * terapeutické užití MeSH
- interferon beta terapeutické užití MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- natalizumab terapeutické užití MeSH
- neurofilamentové proteiny * krev MeSH
- roztroušená skleróza * farmakoterapie krev MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- fingolimod hydrochlorid MeSH
- imunologické faktory * MeSH
- interferon beta MeSH
- natalizumab MeSH
- neurofilament protein L MeSH Prohlížeč
- neurofilamentové proteiny * MeSH
INTRODUCTION: Management of multiple sclerosis (MS) revolves around timely initiation of effective disease-modifying therapy. Here we investigate the additive predictive value of age-adjusted normalised neurofilament light chain (NfL) concentrations when combined with a clinicodemographic model of treatment response. METHODS: Data were obtained from three sources: the University Hospital Basel, the SET cohort in Prague, and EIMS and IMSE cohorts from Sweden. NfL samples were collected within 90 days of baseline, age-adjusted and normalised using a reference population. Principal component analysis reduced the dimensionality of clinicodemographic predictors. Cox proportional hazards models estimated cumulative hazards of relapse, 6-month confirmed disability worsening and 9-month confirmed disability improvement, with and without NfL. Uno's concordance index compared prediction accuracy across pooled and treatment-specific models. RESULTS: The study included 1716 individuals across three therapies: interferon β (n = 554), fingolimod (n = 307) and natalizumab (n = 369). Clinicodemographic characteristics were associated with relapse and disability outcomes. While NfL showed no association in the pooled cohort, in the natalizumab group, higher NfL predicted lower probability of disability improvement (HR = 0.819, 95% CI: 0.814-0.823). Pooled models predicted outcomes with moderate accuracy (relapse: 63.4%, disability worsening: 56.4%, improvement: 67.7%), with minimal contribution from NfL. In treatment-specific models, NfL-inclusive accuracy ranged from 51.3%-62.2% (relapse), 54.3%-60.3% (worsening) and 65%-67.9% (improvement), closely matching models without NfL. CONCLUSION: In well-characterised MS patients treated with interferon β, fingolimod or natalizumab, clinicodemographic information provides modest prognostic value; however, NfL adds minimal incremental utility.
Brain and Mind Centre the University of Sydney Sydney New South Wales Australia
Centre for Molecular Medicine Karolinska University Hospital Stockholm Sweden
Core Department of Medicine The University of Melbourne Melbourne Victoria Australia
Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
Department of Neurology Box Hill Hospital Melbourne Australia
Melbourne School of Psychological Sciences the University of Melbourne Australia
Menzies Institute for Medical Research University of Tasmania Hobart Tasmania Australia
Sydney Neuroimaging Analysis Centre Camperdown New South Wales Australia
Zobrazit více v PubMed
Xie Y., Tian Z., Han F., Liang S., Gao Y., and Wu D., “Factors Associated With Relapses in Relapsing‐Remitting Multiple Sclerosis: A Systematic Review and Meta‐Analysis,” Medicine 99, no. 27 (2020): e20885. PubMed PMC
Jokubaitis V. G., Zhou Y., Butzkueven H., and Taylor B. V., “Genotype and Phenotype in Multiple Sclerosis – Potential for Disease Course Prediction?,” Current Treatment Options in Neurology 20, no. 6 (2018): 18, 10.1007/s11940-018-0505-6. PubMed DOI
Thebault S., Booth R. A., Rush C. A., MacLean H., and Freedman M. S., “Serum Neurofilament Light Chain Measurement in MS: Hurdles to Clinical Translation,” Frontiers in Neuroscience 15 (2021): 654942. PubMed PMC
Thebault S., Booth R. A., and Freedman M. S., “Blood Neurofilament Light Chain: The Neurologist's Troponin?,” Biomedicine 8, no. 11 (2020): 1–11. PubMed PMC
Benkert P., Meier S., Schaedelin S., et al., “Serum Neurofilament Light Chain for Individual Prognostication of Disease Activity in People With Multiple Sclerosis: A Retrospective Modelling and Validation Study,” Lancet Neurology 21, no. 3 (2022): 246–257. PubMed
Engel S., Protopapa M., Steffen F., et al., “Implications of Extreme Serum Neurofilament Light Chain Levels for the Management of Patients With Relapsing Multiple Sclerosis,” Therapeutic Advances in Neurological Disorders 14 (2021): 1–10. PubMed PMC
Cantó E., Barro C., Zhao C., et al., “Association Between Serum Neurofilament Light Chain Levels and Long‐Term Disease Course Among Patients With Multiple Sclerosis Followed Up for 12 Years,” JAMA Neurology 76, no. 11 (2019): 1359–1366, 10.1001/jamaneurol.2019.2137. PubMed DOI PMC
Chitnis T., Gonzalez C., Healy B. C., et al., “Neurofilament Light Chain Serum Levels Correlate With 10‐Year MRI Outcomes in Multiple Sclerosis,” Annals of Clinical Translational Neurology 5, no. 12 (2018): 1478–1491. PubMed PMC
Kuhle J., Plavina T., Barro C., et al., “Neurofilament Light Levels Are Associated With Long‐Term Outcomes in Multiple Sclerosis,” Multiple Sclerosis 26, no. 13 (2020): 1691–1699. PubMed PMC
Jakimovski D., Zivadinov R., Ramanthan M., et al., “Serum Neurofilament Light Chain Level Associations With Clinical and Cognitive Performance in Multiple Sclerosis: A Longitudinal Retrospective 5‐Year Study,” Multiple Sclerosis 26 (2020): 1670–1681. PubMed
Uher T., Havrdova E. K., Benkert P., et al., “Measurement of Neurofilaments Improves Stratification of Future Disease Activity in Early Multiple Sclerosis,” Multiple Sclerosis Journal 27, no. 13 (2021): 2001–2013. PubMed
Thebault S., Reaume M., Marrie R. A., et al., “High or Increasing Serum NfL Is Predictive of Impending Multiple Sclerosis Relapses,” Multiple Sclerosis and Related Disorders 59 (2022): 103535. PubMed
Pellegrini F., Copetti M., Bovis F., et al., “A Proof‐Of‐Concept Application of a Novel Scoring Approach for Personalized Medicine in Multiple Sclerosis,” Multiple Sclerosis Journal 26, no. 9 (2020): 1064–1073. PubMed
Bovis F., Kalincik T., Lublin F., et al., “Treatment Response Score to Glatiramer Acetate or Interferon Beta‐1a,” Neurology 96, no. 2 (2021): e214–e227. PubMed PMC
Kalincik T., Manouchehrinia A., Sobisek L., et al., “Towards Personalized Therapy for Multiple Sclerosis: Prediction of Individual Treatment Response,” Brain 140, no. 9 (2017): 2426–2443. PubMed
Butzkueven H., Chapman J., Cristiano E., et al., “MSBase: An International, Online Registry and Platform for Collaborative Outcomes Research in Multiple Sclerosis,” Multiple Sclerosis 12, no. 6 (2006): 769–774. PubMed
de Leeuw J. and Mair P., “Gifi Methods for Optimal Scaling in R: The Package Homals,” Journal of Statistical Software 31 (2009): 1–21, https://www.jstatsoft.org/index.php/jss/article/view/v031i04.
Moradi N., Sharmin S., Malpas C. B., et al., “External Validation of a Clinical Prediction Model in Multiple Sclerosis,” Multiple Sclerosis Journal 29, no. 2 (2023): 261–269. PubMed
Disanto G., Benkert P., Lorscheider J., et al., “The Swiss Multiple Sclerosis Cohort‐Study (SMSC): A Prospective Swiss Wide Investigation of Key Phases in Disease Evolution and New Treatment Options,” PLoS One 11, no. 3 (2016): e0152347, 10.1371/journal.pone.0152347. PubMed DOI PMC
Horakova D., Zivadinov R., Weinstock‐Guttman B., et al., “Environmental Factors Associated With Disease Progression After the First Demyelinating Event: Results From the Multi‐Center SET Study,” PLoS One 8, no. 1 (2013): 1–8. PubMed PMC
Hedström A. K., Hillert J., Olsson T., and Alfredsson L., “Smoking and Multiple Sclerosis Susceptibility,” European Journal of Epidemiology 28, no. 11 (2013): 867–874, 10.1007/s10654-013-9853-4. PubMed DOI PMC
Holmén C., Piehl F., Hillert J., et al., “A Swedish National Post‐Marketing Surveillance Study of Natalizumab Treatment in Multiple Sclerosis,” Multiple Sclerosis Journal 17, no. 6 (2011): 708–719, 10.1177/1352458510394701. PubMed DOI
Polman C. H., Reingold S. C., Edan G., et al., “Diagnostic Criteria for Multiple Sclerosis: 2005 Revisions to the ‘McDonald Criteria’,” Annals of Neurology 58 (2005): 840–846. PubMed
Polman C. H., Reingold S. C., Banwell B., et al., “Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria,” Annals of Neurology 69, no. 2 (2011): 292–302. PubMed PMC
Thompson A. J., Banwell B. L., Barkhof F., et al., “Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria,” Lancet Neurology 17, no. 2 (2018): 162–173. PubMed
Teunissen C. E., Tumani H. T., Bennett J. L., et al., “A Consensus Protocol for the Standardization of Cerebrospinal Fluid Collection and Biobanking,” Multiple Sclerosis 73 (2009): 1914–1922. PubMed PMC
Manouchehrinia A., Stridh P., Khademi M., et al., “Plasma Neurofilament Light Levels Are Associated With Risk of Disability in Multiple Sclerosis,” Neurology 94, no. 23 (2020): e2457–e2467. PubMed PMC
Disanto G., Barro C., Benkert P., et al., “Serum Neurofilament Light: A Biomarker of Neuronal Damage in Multiple Sclerosis,” Annals of Neurology 81, no. 6 (2017): 857–870. PubMed PMC
Manouchehrinia A., Piehl F., Hillert J., et al., “Confounding Effect of Blood Volume and Body Mass Index on Blood Neurofilament Light Chain Levels,” Annals of Clinical Translational Neurology 7, no. 1 (2020): 139–143. PubMed PMC
Kalincik T., Kister I., Bacon T. E., et al., “Multiple Sclerosis Severity Score (MSSS) Improves the Accuracy of Individualized Prediction in MS,” Multiple Sclerosis Journal 28 (2022): 1752–1761. PubMed
Schumacher G. A., Beebe G., Kibler R. F., et al., “Problems of Experimental Trials of Therapy in Multiple Sclerosis: Report by the Panel on the Evaluation of Experimental Trials of Therapy in Multiple Sclerosis,” Annals of the New York Academy of Sciences 122, no. 1 (1965): 552–568, https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749‐6632.1965.tb20235.x. PubMed DOI
D'Souza M., Yaldizli Ö., John R., et al., “Neurostatus e‐Scoring Improves Consistency of Expanded Disability Status Scale Assessments: A Proof of Concept Study,” Multiple Sclerosis Journal 23, no. 4 (2017): 597–603. PubMed
Kalincik T., Cutter G., Spelman T., et al., “Defining Reliable Disability Outcomes in Multiple Sclerosis,” Brain 138, no. 11 (2015): 3287–3298. PubMed
Nelson W., “Theory and Applications of Hazard Plotting for Censored Failure Data,” Technometrics 14, no. 4 (1972): 945–966.
Uno H., Cai T., Tian L., and Wei L. J., “Evaluating Prediction Rules for t‐Year Survivors With Censored Regression Models,” Journal of the American Statistical Association 102, no. 478 (2007): 527–537.
Uno H., Cai T., Pencina M. J., D'Agostino R. B., and Wei L. J., “On the C‐Statistics for Evaluating Overall Adequacy of Risk Prediction Procedures With Censored Survival Data,” Statistics in Medicine 30, no. 10 (2011): 1105–1117. PubMed PMC
Roos I., Leray E., Frascoli F., et al., “Delay From Treatment Start to Full Effect of Immunotherapies for Multiple Sclerosis,” Brain 143, no. 9 (2020): 2742–2756, https://academic.oup.com/brain/article/143/9/2742/5908734. PubMed
Kuhle J., Kropshofer H., Haering D. A., et al., “Blood Neurofilament Light Chain as a Biomarker of MS Disease Activity and Treatment Response,” Neurology 92, no. 10 (2019): E1007–E1015. PubMed PMC
Bar‐Or A., Montalban X., Hu X., et al., “Serum Neurofilament Light Trajectories and Their Relation to Subclinical Radiological Disease Activity in Relapsing Multiple Sclerosis Patients in the APLIOS Trial,” Neurology and Therapy 12 (2022): 303–317. PubMed PMC
Lizak N., Malpas C. B., Sharmin S., et al., “Association of Sustained Immunotherapy With Disability Outcomes in Patients With Active Secondary Progressive Multiple Sclerosis,” JAMA Neurology 77, no. 11 (2020): 1398–1407, https://jamanetwork.com/journals/jamaneurology/fullarticle/2768700. PubMed PMC
Reyes S., Smets I., Holden D., et al., “CSF Neurofilament Light Chain Testing as an Aid to Determine Treatment Strategies in MS,” Neurology – Neuroimmunology Neuroinflammation 7, no. 6 (2020): e880, http://nn.neurology.org/content/7/6/e880.abstract. PubMed PMC
Leppert D., Kropshofer H., Häring D. A., et al., “Blood Neurofilament Light in Progressive Multiple Sclerosis,” Neurology 98, no. 21 (2022): e2120–e2131, 10.1212/WNL.0000000000200258. PubMed DOI PMC
Barnett M., Barnett Y., and Reddel S., “MRI and Laboratory Monitoring of Disease‐Modifying Therapy Efficacy and Risks,” Current Opinion in Neurology 35, no. 3 (2022): 278–285. PubMed
Bergamaschi R., Quaglini S., Trojano M., et al., “Early Prediction of the Long Term Evolution of Multiple Sclerosis: The Bayesian Risk Estimate for Multiple Sclerosis (BREMS) Score,” Journal of Neurology, Neurosurgery, and Psychiatry 78, no. 7 (2007): 757–759. PubMed PMC
Bergamaschi R., Montomoli C., Mallucci G., et al., “BREMSO: A Simple Score to Predict Early the Natural Course of Multiple Sclerosis,” European Journal of Neurology 22, no. 6 (2015): 981–989. PubMed
Manouchehrinia A., Zhu F., Piani‐Meier D., et al., “Predicting Risk of Secondary Progression in Multiple Sclerosis: A Nomogram,” Multiple Sclerosis Journal 25, no. 8 (2019): 1102–1112. PubMed
Sormani M. P., Rovaris M., Comi G., and Filippi M., “A Composite Score to Predict Short‐Term Disease Activity in Patients With Relapsing‐Remitting MS,” Neurology 69, no. 12 (2007): 1230–1235. PubMed
Sormani M. P., Gasperini C., Romeo M., et al., “Assessing Response to Interferon‐β in a Multicenter Dataset of Patients With MS,” Neurology 87, no. 2 (2016): 134–140. PubMed
Río J., Nos C., Tintoré M., et al., “Defining the Response to Interferon‐β in Relapsing‐Remitting Multiple Sclerosis Patients,” Annals of Neurology 59, no. 2 (2006): 344–352. PubMed
Tintore M., Rovira À., Río J., et al., “Defining High, Medium and Low Impact Prognostic Factors for Developing Multiple Sclerosis,” Brain 138, no. 7 (2015): 1863–1874. PubMed
Steyerberg E. W., Eijkemans M. J. C., and Habbema J. D. F., “Stepwise Selection in Small Data Sets: A Simulation Study of Bias in Logistic Regression Analysis,” Journal of Clinical Epidemiology 52, no. 10 (1999): 935–942, https://www.sciencedirect.com/science/article/pii/S0895435699001031. PubMed
Zhang Z. and Castelló A., “Principal Components Analysis in Clinical Studies,” Annals of Translational Medicine 5, no. 17 (2017): 351–358. PubMed PMC
Kalincik T., Kuhle J., Pucci E., et al., “Data Quality Evaluation for Observational Multiple Sclerosis Registries,” Multiple Sclerosis Journal 23, no. 5 (2017): 647–655, 10.1177/1352458516662728. PubMed DOI
Polymeris A. A., Coslovksy M., Aeschbacher S., et al., “Serum Neurofilament Light in Atrial Fibrillation: Clinical, Neuroimaging and Cognitive Correlates,” Brain Communications 2, no. 2 (2020): fcaa166, 10.1093/braincomms/fcaa166. PubMed DOI PMC
Hendricks R., Baker D., Brumm J., et al., “Establishment of Neurofilament Light Chain Simoa Assay in Cerebrospinal Fluid and Blood,” Bioanalysis 11, no. 15 (2019): 1405–1418. PubMed