Towards personalized therapy for multiple sclerosis: prediction of individual treatment response
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu klinické zkoušky, časopisecké články, multicentrická studie
PubMed
29050389
DOI
10.1093/brain/awx185
PII: 4061515
Knihovny.cz E-zdroje
- Klíčová slova
- disability, multiple sclerosis, precision medicine, prediction, relapses,
- MeSH
- algoritmy * MeSH
- databáze faktografické MeSH
- demografie MeSH
- dospělí MeSH
- imunosupresiva terapeutické užití MeSH
- individualizovaná medicína metody MeSH
- lidé MeSH
- mladý dospělý MeSH
- posuzování pracovní neschopnosti MeSH
- předpověď metody MeSH
- prognóza MeSH
- progrese nemoci MeSH
- recidiva MeSH
- reprodukovatelnost výsledků MeSH
- rizikové faktory MeSH
- roztroušená skleróza diagnóza farmakoterapie MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- multicentrická studie MeSH
- Názvy látek
- imunosupresiva MeSH
Timely initiation of effective therapy is crucial for preventing disability in multiple sclerosis; however, treatment response varies greatly among patients. Comprehensive predictive models of individual treatment response are lacking. Our aims were: (i) to develop predictive algorithms for individual treatment response using demographic, clinical and paraclinical predictors in patients with multiple sclerosis; and (ii) to evaluate accuracy, and internal and external validity of these algorithms. This study evaluated 27 demographic, clinical and paraclinical predictors of individual response to seven disease-modifying therapies in MSBase, a large global cohort study. Treatment response was analysed separately for disability progression, disability regression, relapse frequency, conversion to secondary progressive disease, change in the cumulative disease burden, and the probability of treatment discontinuation. Multivariable survival and generalized linear models were used, together with the principal component analysis to reduce model dimensionality and prevent overparameterization. Accuracy of the individual prediction was tested and its internal validity was evaluated in a separate, non-overlapping cohort. External validity was evaluated in a geographically distinct cohort, the Swedish Multiple Sclerosis Registry. In the training cohort (n = 8513), the most prominent modifiers of treatment response comprised age, disease duration, disease course, previous relapse activity, disability, predominant relapse phenotype and previous therapy. Importantly, the magnitude and direction of the associations varied among therapies and disease outcomes. Higher probability of disability progression during treatment with injectable therapies was predominantly associated with a greater disability at treatment start and the previous therapy. For fingolimod, natalizumab or mitoxantrone, it was mainly associated with lower pretreatment relapse activity. The probability of disability regression was predominantly associated with pre-baseline disability, therapy and relapse activity. Relapse incidence was associated with pretreatment relapse activity, age and relapsing disease course, with the strength of these associations varying among therapies. Accuracy and internal validity (n = 1196) of the resulting predictive models was high (>80%) for relapse incidence during the first year and for disability outcomes, moderate for relapse incidence in Years 2-4 and for the change in the cumulative disease burden, and low for conversion to secondary progressive disease and treatment discontinuation. External validation showed similar results, demonstrating high external validity for disability and relapse outcomes, moderate external validity for cumulative disease burden and low external validity for conversion to secondary progressive disease and treatment discontinuation. We conclude that demographic, clinical and paraclinical information helps predict individual response to disease-modifying therapies at the time of their commencement.
Amiri Hospital P O Box 1661 Qurtoba Kuwait 73767 Kuwait
Assaf Harofeh Medical Center Zerifin Beer Yaakov 70100 Israel
Azienda Sanitaria Unica Regionale Marche AV3 Via Santa Lucia 2 Macerata 62100 Italy
Brain and Mind Centre University of Sydney 100 Mallett Camperdown 2050 Australia
C Mondino National Neurological Institute via Mondino 2 Pavia 27100 Italy
Cliniques Universitaires Saint Luc avenue Hippocrate 10 UCL10 80 Brussels 1200 BXL Belgium
CORe Department of Medicine University of Melbourne 300 Grattan St Melbourne 3050 Australia
Department of Clinical Neuroscience Karolinska Institutet Stockholm SE 17177 Sweden
Department of Medicine University of Melbourne 300 Grattan St Melbourne 3050 Australia
Department of Neurology Box Hill Hospital Monash University Melbourne Australia
Department of Neurology Royal Melbourne Hospital 300 Grattan St Melbourne 3050 Australia
Flinders Medical Centre Flinders Drive Adelaide 5042 Australia
Groene Hart ziekenhuis bleulandweg 10 Gouda 2800 BB The Netherlands
Hospital de Galdakao Usansolo Barrio Labeaga s n Galdakao 48660 Spain
Hospital Donostia Paseo de Begiristain San Sebastián 20014 Spain
Hospital Germans Trias i Pujol Crtra de Canyet s n Badalona 8916 Spain
Hospital Italiano Guise 1870 Buenos Aires 1425 Argentina
Hospital Universitario La Paz Paseo de la Castellana 261 Madrid 28050 Spain
Hospital Universitario Virgen Macarena Amador de los Rios 48 50 4a Sevilla 41003 Spain
INEBA Institute of Neuroscience Buenos Aires Guardia Vieja 4435 Buenos Aires C1192AAW Argentina
Isfahan University of Medical Sciences Soffeh St Isfahan 81744 Iran
Jahn Ferenc Teaching Hospital Köves u 1 Budapest 1101 Hungary
Jewish General Hospital 3755 Cote Sainte Catherine Montreal J7A 4T8 Canada
KTU Medical Faculty Farabi Hospital Karadeniz Technical University Trabzon 61080 Turkey
Liverpool Hospital Elizabeth St Liverpool 21 Australia
Nemocnice Jihlava Vrchlickeho 59 Jihlava 58633 Czech Republic
Neuro Rive Sud 4896 boul Taschereau suite 250 Greenfield Park J4V 2J2 Canada
Nuovo Ospedale Civile Sant'Agostino Estense via giardini 1355 Modena 41100 Italy
Ondokuz Mayis University Medical Faculty Kurupelit Samsun 55160 Turkey
Ospedali Riuniti di Salerno Via s Leonardo Salerno 84100 Italy
Royal Brisbane and Women's Hospital 33 North Street Spring Hill QLD 4000 Australia
University of Bari Via Calefati 53 Bari 70122 Italy
University of Florence Viale Morgagni 85 Florence 50134 Italy
University of Newcastle Lookout Road Newcastle 2305 Australia
University of Parma Via Gramsci 14 Parma 43100 Italy
Westmead Hospital Hawkesbury Rd Sydney 2145 Australia
Zuyderland Ziekenhuis Walramstraat 23 Sittard 6131 BK The Netherlands
Citace poskytuje Crossref.org
A future of AI-driven personalized care for people with multiple sclerosis
Predictors of treatment switching in the Big Multiple Sclerosis Data Network
Using personalized prognosis in the treatment of relapsing multiple sclerosis: A practical guide
Treatment Response Score to Glatiramer Acetate or Interferon Beta-1a