Using personalized prognosis in the treatment of relapsing multiple sclerosis: A practical guide
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36238285
PubMed Central
PMC9551305
DOI
10.3389/fimmu.2022.991291
Knihovny.cz E-zdroje
- Klíčová slova
- biomarkers, clinical parameters, evoked potentials, magnetic resonance imaging (MRI), multiple sclerosis, optical coherence tomography, prognosis, treatment,
- MeSH
- biologické markery MeSH
- kvalita života MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- prognóza MeSH
- recidiva MeSH
- roztroušená skleróza * diagnóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
The clinical course of multiple sclerosis (MS) is highly variable among patients, thus creating important challenges for the neurologist to appropriately treat and monitor patient progress. Despite some patients having apparently similar symptom severity at MS disease onset, their prognoses may differ greatly. To this end, we believe that a proactive disposition on the part of the neurologist to identify prognostic "red flags" early in the disease course can lead to much better long-term outcomes for the patient in terms of reduced disability and improved quality of life. Here, we present a prognosis tool in the form of a checklist of clinical, imaging and biomarker parameters which, based on consensus in the literature and on our own clinical experiences, we have established to be associated with poorer or improved clinical outcomes. The neurologist is encouraged to use this tool to identify the presence or absence of specific variables in individual patients at disease onset and thereby implement sufficiently effective treatment strategies that appropriately address the likely prognosis for each patient.
B' Department of Neurology Aristotle University of Thessaloniki Thessaloniki Greece
Brain and Mind Center University of Sydney Sydney NSW Australia
Department of Human Neuroscience Sapienza University Rome Italy
Department of Medicine Faculty of Medicine Universidad Complutense de Madrid Madrid Spain
Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
Department of Neurology Palacky University Olomouc Olomouc Czechia
Department of Neurology University Hospital Regensburg Regensburg Germany
Department of Neuroscience and Rehabilitation University of Ferrara Ferrara Italy
Neuroscience Center King Faisal Specialist Hospital and Research Center Riyadh Saudi Arabia
Noorderhart Revalidatie and Multiple Sclerosis Pelt Belgium
REVAL and BIOMED Hasselt University Hasselt Belgium
Turku University Hospital and University of Turku Turku Finland
Unit of Clinical Neurology San Anna University Hospital Ferrara Italy
Universitair Multiple Sclerosis Centrum Hasselt Pelt Belgium
University Lille Inserm U1172 LilNCog Centre Hospitalier Universitaire Precise Lille France
Zobrazit více v PubMed
Multiple sclerosis international federation. atlas of MS. 3rd ed. London, UK: Multiple Sclerosis International Federation; (2020) p. 1–37.
Rotstein D, Montalban X. Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat Rev Neurol (2019) 15(5):287–300. doi: 10.1038/s41582-019-0170-8 PubMed DOI
Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. . Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology (2014) 83(3):278–86. doi: 10.1212/WNL.0000000000000560 PubMed DOI PMC
Rotstein DL, Healy BC, Malik MT, Chitnis T, Weiner HL. Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol (2015) 72(2):152–8. doi: 10.1001/jamaneurol.2014.3537 PubMed DOI
Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: An amnesic process. Brain (2003) 126(Pt 4):770–82. doi: 10.1093/brain/awg081 PubMed DOI
Guillemin F, Baumann C, Epstein J, Kerschen P, Garot T, Mathey G, et al. . Older age at multiple sclerosis onset is an independent factor of poor prognosis: A population-based cohort study. Neuroepidemiology (2017) 48(3-4):179–87. doi: 10.1159/000479516 PubMed DOI
Runmarker B, Andersen O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain (1993) 116(Pt 1):117–34. doi: 10.1093/brain/116.1.117 PubMed DOI
Scalfari A, Neuhaus A, Daumer M, Ebers GC, Muraro PA. Age and disability accumulation in multiple sclerosis. Neurology (2011) 77(13):1246–52. doi: 10.1212/WNL.0b013e318230a17d PubMed DOI PMC
Kalincik T, Buzzard K, Jokubaitis V, Trojano M, Duquette P, Izquierdo G, et al. . Risk of relapse phenotype recurrence in multiple sclerosis. Mult Scler (2014) 20(11):1511–22. doi: 10.1177/1352458514528762 PubMed DOI
Conway BL, Zeydan B, Uygunoğlu U, Novotna M, Siva A, Pittock SJ, et al. . Age is a critical determinant in recovery from multiple sclerosis relapses. Mult Scler (2019) 25(13):1754–63. doi: 10.1177/1352458518800815 PubMed DOI
Angeloni B, Bigi R, Bellucci G, Mechelli R, Ballerini C, Romano C, et al. . A case of double standard: Sex differences in multiple sclerosis risk factors. Int J Mol Sci (2021) 22(7):3696. doi: 10.3390/ijms22073696 PubMed DOI PMC
Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J, et al. . Evidence for a two-stage disability progression in multiple sclerosis. Brain (2010) 133(Pt 7):1900–13. doi: 10.1093/brain/awq076 PubMed DOI PMC
Pozzilli C, Tomassini V, Marinelli F, Paolillo A, Gasperini C, Bastianello S. 'Gender gap' in multiple sclerosis: Magnetic resonance imaging evidence. Eur J Neurol (2003) 10(1):95–7. doi: 10.1046/j.1468-1331.2003.00519.x PubMed DOI
Benedict RH, Zivadinov R. Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol (2011) 7(6):332–42. doi: 10.1038/nrneurol.2011.61 PubMed DOI
Schoonheim MM, Popescu V, Rueda Lopes FC, Wiebenga OT, Vrenken H, Douw L, et al. . Subcortical atrophy and cognition: Sex effects in multiple sclerosis. Neurology (2012) 79(17):1754–61. doi: 10.1212/WNL.0b013e3182703f46 PubMed DOI
Amato MP, Derfuss T, Hemmer B, Liblau R, Montalban X, Soelberg Sørensen P, et al. . 2016 ECTRIMS focused workshop group. environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Mult Scler (2018) 24(5):590–603. doi: 10.1177/1352458516686847 PubMed DOI
Simpson S, Jr, Taylor B, Blizzard L, Ponsonby AL, Pittas F, Tremlett H, et al. . Higher 25-hydroxyvitamin d is associated with lower relapse risk in multiple sclerosis. Ann Neurol (2010) 68(2):193–203. doi: 10.1002/ana.22043 PubMed DOI
Ascherio A, Munger KL, White R, Köchert K, Simon KC, Polman CH, et al. . Vitamin d as an early predictor of multiple sclerosis activity and progression. JAMA Neurol (2014) 71(3):306–14. doi: 10.1001/jamaneurol.2013.5993 PubMed DOI PMC
Moosazadeh M, Nabinezhad-Male F, Afshari M, Nasehi MM, Shabani M, Kheradmand M, et al. . Vitamin d status and disability among patients with multiple sclerosis: a systematic review and meta-analysis. AIMS Neurosci (2021) 8(2):239–53. doi: 10.3934/Neuroscience.2021013 PubMed DOI PMC
Smolders J, Torkildsen Ø, Camu W, Holmøy T. An update on vitamin d and disease activity in multiple sclerosis. CNS Drugs (2019) 33(12):1187–99. doi: 10.1007/s40263-019-00674-8 PubMed DOI PMC
Fitzgerald KC, Munger KL, Köchert K, Arnason BG, Comi G, Cook S, et al. . Association of vitamin d levels with multiple sclerosis activity and progression in patients receiving interferon beta-1b. JAMA Neurol (2015) 72(12):1458–65. doi: 10.1001/jamaneurol.2015.2742 PubMed DOI
Virgilio E, Vecchio D, Crespi I, Barbero P, Caloni B, Naldi P, et al. . Serum vitamin d as a marker of impaired information processing speed and early disability in multiple sclerosis patients. Brain Sci (2021) 11(11):1521. doi: 10.3390/brainsci11111521 PubMed DOI PMC
Arikanoglu A, Shugaiv E, Tüzün E, Eraksoy M. Impact of cigarette smoking on conversion from clinically isolated syndrome to clinically definite multiple sclerosis. Int J Neurosci (2013) 123(7):476–9. doi: 10.3109/00207454.2013.764498 PubMed DOI
Healy BC, Ali EN, Guttmann CR, Chitnis T, Glanz BI, Buckle G, et al. . Smoking and disease progression in multiple sclerosis. Arch Neurol (2009) 66(7):858–64. doi: 10.1001/archneurol.2009.122 PubMed DOI PMC
Horakova D, Zivadinov R, Weinstock-Guttman B, Havrdova E, Qu J, Tamaño-Blanco M, et al. . Environmental factors associated with disease progression after the first demyelinating event: results from the multi-center SET study. PloS One (2013) 8(1):e53996. doi: 10.1371/journal.pone.0053996 PubMed DOI PMC
Rosso M, Chitnis T. Association between cigarette smoking and multiple sclerosis: A review. JAMA Neurol (2020) 77(2):245–53. doi: 10.1001/jamaneurol.2019.4271 PubMed DOI
Zivadinov R, Weinstock-Guttman B, Hashmi K, Abdelrahman N, Stosic M, Dwyer M, et al. . Smoking is associated with increased lesion volumes and brain atrophy in multiple sclerosis. Neurology (2009) 73(7):504–10. doi: 10.1212/WNL.0b013e3181b2a706 PubMed DOI PMC
Petersen ER, Oturai AB, Koch-Henriksen N, Magyari M, Sørensen PS, Sellebjerg F, et al. . Smoking affects the interferon beta treatment response in multiple sclerosis. Neurology (2018) 90(7):e593–600. doi: 10.1212/WNL.0000000000004949 PubMed DOI
Weiland TJ, Hadgkiss EJ, Jelinek GA, Pereira NG, Marck CH, van der Meer DM. The association of alcohol consumption and smoking with quality of life, disability and disease activity in an international sample of people with multiple sclerosis. J Neurol Sci (2014) 336(1-2):211–9. doi: 10.1016/j.jns.2013.10.046 PubMed DOI
Kappus N, Weinstock-Guttman B, Hagemeier J, Kennedy C, Melia R, Carl E, et al. . Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry (2016) 87(2):181–7. doi: 10.1136/jnnp-2014-310051 PubMed DOI
Manouchehrinia A, Tench CR, Maxted J, Bibani RH, Britton J, Constantinescu CS. Tobacco smoking and disability progression in multiple sclerosis: United kingdom cohort study. Brain (2013) 136(Pt 7):2298–304. doi: 10.1093/brain/awt139 PubMed DOI PMC
Heydarpour P, Manouchehrinia A, Beiki O, Mousavi SE, Abdolalizadeh A, Moradi-Lakeh M, et al. . Smoking and worsening disability in multiple sclerosis: A meta-analysis. Acta Neurol Scand (2018) 138(1):62–9. doi: 10.1111/ane.12916 PubMed DOI
Moccia M, Lanzillo R, Palladino R, Maniscalco GT, De Rosa A, Russo C, et al. . The framingham cardiovascular risk score in multiple sclerosis. Eur J Neurol (2015) 22(8):1176–83. doi: 10.1111/ene.12720 PubMed DOI
Mowry EM, Azevedo CJ, McCulloch CE, Okuda DT, Lincoln RR, Waubant E, et al. . Body mass index, but not vitamin d status, is associated with brain volume change in MS. Neurology (2018) 91(24):e2256–64. doi: 10.1212/WNL.0000000000006644 PubMed DOI PMC
Briggs FBS, Thompson NR, Conway DS. Prognostic factors of disability in relapsing remitting multiple sclerosis. Mult Scler Relat Disord (2019) 30:9–16. doi: 10.1016/j.msard.2019.01.045 PubMed DOI
Magyari M, Sorensen PS. Comorbidity in multiple sclerosis. Front Neurol (2020) 11:851. doi: 10.3389/fneur.2020.00851 PubMed DOI PMC
Conway DS, Thompson NR, Cohen JA. Influence of hypertension, diabetes, hyperlipidemia, and obstructive lung disease on multiple sclerosis disease course. Mult Scler (2017) 23(2):277–85. doi: 10.1177/1352458516650512 PubMed DOI
Kowalec K, McKay KA, Patten SB, Fisk JD, Evans C, Tremlett H, et al. . Comorbidity increases the risk of relapse in multiple sclerosis: A prospective study. Neurology (2017) 89(24):2455–61. doi: 10.1212/WNL.0000000000004716 PubMed DOI PMC
Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med (2000) 343(20):1430–8. doi: 10.1056/NEJM200011163432001 PubMed DOI
University of California, San Francisco MS-EPIC Team. Cree BAC, Hollenbach JA, Bove R, Kirkish G, Sacco S, et al. . Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol (2019) 85(5):653–66. doi: 10.1002/ana.25463 PubMed DOI PMC
Kappos L, Wolinsky JS, Giovannoni G, Arnold DL, Wang Q, Bernasconi C, et al. . Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol (2020) 77(9):1132–40. doi: 10.1001/jamaneurol.2020.1568 PubMed DOI PMC
Giovannoni G, Popescu V, Wuerfel J, Hellwig K, Iacobaeus E, Jensen MB, et al. . Smouldering multiple sclerosis: the 'real MS'. Ther Adv Neurol Disord (2022) 15:17562864211066751. doi: 10.1177/17562864211066751 PubMed DOI PMC
Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, Daumer M, et al. . The natural history of multiple sclerosis: A geographically based study 10: relapses and long-term disability. Brain (2010) 133(Pt 7):1914–29. doi: 10.1093/brain/awq118 PubMed DOI PMC
Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: An amnesic process. Brain (2003) 126(Pt 4):770–82. doi: 10.1093/brain/awg081 PubMed DOI
Dutta R, Trapp BD. Relapsing and progressive forms of multiple sclerosis: insights from pathology. Curr Opin Neurol (2014) 27(3):271–8. doi: 10.1097/WCO.0000000000000094 PubMed DOI PMC
Langer-Gould A, Popat RA, Huang SM, Cobb K, Fontoura P, Gould MK, et al. . Clinical and demographic predictors of long-term disability in patients with relapsing-remitting multiple sclerosis: a systematic review. Arch Neurol (2006) 63(12):1686–91. doi: 10.1001/archneur.63.12.1686 PubMed DOI
Novotna M, Paz Soldán MM, Abou Zeid N, Kale N, Tutuncu M, Crusan DJ, et al. . Poor early relapse recovery affects onset of progressive disease course in multiple sclerosis. Neurology (2015) 85(8):722–9. doi: 10.1212/WNL.0000000000001856 PubMed DOI PMC
Brown FS, Glasmacher SA, Kearns PKA, MacDougall N, Hunt D, Connick P, et al. . Systematic review of prediction models in relapsing remitting multiple sclerosis. PloS One (2020) 15(5):e0233575. doi: 10.1371/journal.pone.0233575 PubMed DOI PMC
Rudick RA, Lee JC, Cutter GR, Miller DM, Bourdette D, Weinstock-Guttman B, et al. . Disability progression in a clinical trial of relapsing-remitting multiple sclerosis: Eight-year follow-up. Arch Neurol (2010) 67(11):1329–35. doi: 10.1001/archneurol.2010.150 PubMed DOI
Amato MP, Ponziani G. A prospective study on the prognosis of multiple sclerosis. Neurol Sci (2000) 21(4 Suppl 2):S831–8. doi: 10.1007/s100720070021 PubMed DOI
Tintore M, Rovira À, Río J, Otero-Romero S, Arrambide G, Tur C, et al. . Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain (2015) 138(Pt 7):1863–74. doi: 10.1093/brain/awv105 PubMed DOI
Tintore M, Rovira A, Arrambide G, Mitjana R, Río J, Auger C, et al. . Brainstem lesions in clinically isolated syndromes. Neurology (2010) 75(21):1933–8. doi: 10.1212/WNL.0b013e3181feb26f PubMed DOI
Brownlee WJ, Altmann DR, Prados F, Miszkiel KA, Eshaghi A, Gandini Wheeler-Kingshott CAM, et al. . Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis. Brain (2019) 142(8):2276–87. doi: 10.1093/brain/awz156 PubMed DOI
Minneboo A, Barkhof F, Polman CH, Uitdehaag BM, Knol DL, Castelijns JA. Infratentorial lesions predict long-term disability in patients with initial findings suggestive of multiple sclerosis. Arch Neurol (2004) 61(2):217–21. doi: 10.1001/archneur.61.2.217 PubMed DOI
Swanton JK, Fernando KT, Dalton CM, Miszkiel KA, Altmann DR, Plant GT, et al. . Early MRI in optic neuritis: The risk for disability. Neurology (2009) 72(6):542–50. doi: 10.1212/01.wnl.0000341935.41852.82 PubMed DOI
Brownlee WJ, Altmann DR, Alves Da Mota P, Swanton JK, Miszkiel KA, Wheeler-Kingshott CG, et al. . Association of asymptomatic spinal cord lesions and atrophy with disability 5 years after a clinically isolated syndrome. Mult Scler (2017) 23(5):665–74. doi: 10.1177/1352458516663034 PubMed DOI
Arrambide G, Rovira A, Sastre-Garriga J, Tur C, Castilló J, Río J, et al. . Spinal cord lesions: A modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor. Mult Scler (2018) 24(3):301–12. doi: 10.1177/1352458517697830 PubMed DOI
Kara F, Göl MF, Boz C. Determinants of disability development in patients with multiple sclerosis. Arq Neuropsiquiatr (2021) 79(6):489–96. doi: 10.1590/0004-282X-ANP-2020-0338 PubMed DOI PMC
Sevim S. Relapses in multiple sclerosis: Definition, pathophysiology, features, imitators, and treatment. Turk J Neurol (2016) 22:99–108. doi: 10.4274/tnd.75318 DOI
Bsteh G, Ehling R, Lutterotti A, Hegen H, Di Pauli F, Auer M, et al. . Long term clinical prognostic factors in relapsing-remitting multiple sclerosis: Insights from a 10-year observational study. PloS One (2016) 11(7):e0158978. doi: 10.1371/journal.pone.0158978 PubMed DOI PMC
Leone MA, Bonissoni S, Collimedaglia L, Tesser F, Calzoni S, Stecco A, et al. . Factors predicting incomplete recovery from relapses in multiple sclerosis: A prospective study. Mult Scler (2008) 14(4):485–93. doi: 10.1177/1352458507084650 PubMed DOI
Deloire M, Ruet A, Hamel D, Bonnet M, Brochet B. Early cognitive impairment in multiple sclerosis predicts disability outcome several years later. Mult Scler (2010) 16(5):581–7. doi: 10.1177/1352458510362819 PubMed DOI
Oset M, Stasiolek M, Matysiak M. Cognitive dysfunction in the early stages of multiple sclerosis-how much and how important? Curr Neurol Neurosci Rep (2020) 20(7):22. doi: 10.1007/s11910-020-01045-3 PubMed DOI PMC
Jacques F, Schembri A, Paquette C. Single digit modality: What is a clinically significant change in multiple sclerosis patients. Neurology (2020) 94(15 Supplement):880.
O'Riordan JI, Thompson AJ, Kingsley DP, MacManus DG, Kendall BE, Rudge P, et al. . The prognostic value of brain MRI in clinically isolated syndromes of the CNS. a 10-year follow-up. Brain (1998) 121(Pt 3):495–503. doi: 10.1093/brain/121.3.495 PubMed DOI
Fisniku LK, Brex PA, Altmann DR, Miszkiel KA, Benton CE, Lanyon R, et al. . Disability and T2 MRI lesions: A 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain (2008) 131(Pt 3):808–17. doi: 10.1093/brain/awm329 PubMed DOI
Uher T, Vaneckova M, Sobisek L, Tyblova M, Seidl Z, Krasensky J, et al. . Combining clinical and magnetic resonance imaging markers enhances prediction of 12-year disability in multiple sclerosis. Mult Scler (2017) 23(1):51–61. doi: 10.1177/1352458516642314 PubMed DOI
Traboulsee A, Li DKB, Cascione M, Fang J, Dangond F, Miller A. Predictive value of early magnetic resonance imaging measures is differentially affected by the dose of interferon beta-1a given subcutaneously three times a week: An exploratory analysis of the PRISMS study. BMC Neurol (2018) 18(1):68. doi: 10.1186/s12883-018-1066-8 PubMed DOI PMC
Popescu V, Agosta F, Hulst HE, Sluimer IC, Knol DL, Sormani MP, et al. . Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry (2013) 84(10):1082–91. doi: 10.1136/jnnp-2012-304094 PubMed DOI
Kearney H, Rocca MA, Valsasina P, Balk L, Sastre-Garriga J, Reinhardt J, et al. . Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Mult Scler (2014) 20(1):72–80. doi: 10.1177/1352458513492245 PubMed DOI PMC
Morrissey SP, Miller DH, Kendall BE, Kingsley DP, Kelly MA, Francis DA, et al. . The significance of brain magnetic resonance imaging abnormalities at presentation with clinically isolated syndromes suggestive of multiple sclerosis. A 5-year follow-up study. Brain (1993) 116(Pt 1):135–46. doi: 10.1093/brain/116.1.135 PubMed DOI
Brex PA, Ciccarelli O, O'Riordan JI, Sailer M, Thompson AJ, Miller DH. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med (2002) 346(3):158–64. doi: 10.1056/NEJMoa011341 PubMed DOI
Tintoré M, Rovira A, Río J, Nos C, Grivé E, Téllez N, et al. . Baseline MRI predicts future attacks and disability in clinically isolated syndromes. Neurology (2006) 67(6):968–72. doi: 10.1212/01.wnl.0000237354.10144.ec PubMed DOI
Di Filippo M, Anderson VM, Altmann DR, Swanton JK, Plant GT, Thompson AJ, et al. . Brain atrophy and lesion load measures over 1 year relate to clinical status after 6 years in patients with clinically isolated syndromes. J Neurol Neurosurg Psychiatry (2010) 81(2):204–8. doi: 10.1136/jnnp.2009.171769 PubMed DOI
Thaler C, Faizy TD, Sedlacik J, Holst B, Stürner K, Heesen C, et al. . T1 recovery is predominantly found in black holes and is associated with clinical improvement in patients with multiple sclerosis. AJNR Am J Neuroradiol (2017) 38(2):264–9. doi: 10.3174/ajnr.A5004 PubMed DOI PMC
Sahraian MA, Radue EW, Haller S, Kappos L. Black holes in multiple sclerosis: definition, evolution, and clinical correlations. Acta Neurol Scand (2010) 122(1):1–8. doi: 10.1111/j.1600-0404.2009.01221.x PubMed DOI
Rocca MA, Comi G, Filippi M. The role of T1-weighted derived measures of neurodegeneration for assessing disability progression in multiple sclerosis. Front Neurol (2017) 8:433. doi: 10.3389/fneur.2017.00433 PubMed DOI PMC
Magliozzi R, Cross AH. Can CSF biomarkers predict future MS disease activity and severity? Mult Scler (2020) 26(5):582–90. doi: 10.1177/1352458519871818 PubMed DOI
Dobson R, Ramagopalan S, Davis A, Giovannoni G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: A meta-analysis of prevalence, prognosis and effect of latitude. J Neurol Neurosurg Psychiatry (2013) 84(8):909–14. doi: 10.1136/jnnp-2012-304695 PubMed DOI
Villar LM, Masjuan J, González-Porqué P, Plaza J, Sádaba MC, Roldán E, et al. . Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann Neurol (2003) 53(2):222–6. doi: 10.1002/ana.10441 PubMed DOI
Perini P, Ranzato F, Calabrese M, Battistin L, Gallo P. Intrathecal IgM production at clinical onset correlates with a more severe disease course in multiple sclerosis. J Neurol Neurosurg Psychiatry (2006) 77(8):953–5. doi: 10.1136/jnnp.2005.086116 PubMed DOI PMC
Pfuhl C, Grittner U, Gieß RM, Scheel M, Behrens JR, Rasche L, et al. . Intrathecal IgM production is a strong risk factor for early conversion to multiple sclerosis. Neurology (2019) 93(15):e1439–51. doi: 10.1212/WNL.0000000000008237 PubMed DOI
Disanto G, Barro C, Benkert P, Naegelin Y, Schädelin S, Giardiello A, et al. . Serum neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann Neurol (2017) 81(6):857–70. doi: 10.1002/ana.24954 PubMed DOI PMC
Kuhle J, Kropshofer H, Haering DA, Kundu U, Meinert R, Barro C, et al. . Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology (2019) 92(10):e1007–15. doi: 10.1212/WNL.0000000000007032 PubMed DOI PMC
Chitnis T, Gonzalez C, Healy BC, Saxena S, Rosso M, Barro C, et al. . Neurofilament light chain serum levels correlate with 10-year MRI outcomes in multiple sclerosis. Ann Clin Transl Neurol (2018) 5(12):1478–91. doi: 10.1002/acn3.638 PubMed DOI PMC
Häring DA, Kropshofer H, Kappos L, Cohen JA, Shah A, Meinert R, et al. . Long-term prognostic value of longitudinal measurements of blood neurofilament levels. Neurol Neuroimmunol Neuroinflamm (2020) 7(5):e856. doi: 10.1212/NXI.0000000000000856 PubMed DOI PMC
Bittner S, Steffen F, Uphaus T, Muthuraman M, Fleischer V, Salmen A, et al. . Clinical implications of serum neurofilament in newly diagnosed MS patients: A longitudinal multicentre cohort study. EBioMedicine (2020) 56:102807. doi: 10.1016/j.ebiom.2020.102807 PubMed DOI PMC
Ferreira-Atuesta C, Reyes S, Giovanonni G, Gnanapavan S. The evolution of neurofilament light chain in multiple sclerosis. Front Neurosci (2021) 15:642384. doi: 10.3389/fnins.2021.642384 PubMed DOI PMC
Benkert P, Meier S, Schaedelin S, Manouchehrinia A, Yaldizli Ö, Maceski A, et al. . Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: A retrospective modelling and validation study. Lancet Neurol (2022) 21(3):246–57. doi: 10.1016/S1474-4422(22)00009-6 PubMed DOI
Oreja-Guevara C, Noval S, Alvarez-Linera J, Gabaldón L, Manzano B, Chamorro B, et al. . Clinically isolated syndromes suggestive of multiple sclerosis: An optical coherence tomography study. PloS One (2012) 7(3):e33907. doi: 10.1371/journal.pone.0033907 PubMed DOI PMC
Martinez-Lapiscina EH, Arnow S, Wilson JA, Saidha S, Preiningerova JL, Oberwahrenbrock T, et al. . Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: A cohort study. Lancet Neurol (2016) 15(6):574–84. doi: 10.1016/S1474-4422(16)00068-5 PubMed DOI
Leocani L, Rovaris M, Boneschi FM, Medaglini S, Rossi P, Martinelli V, et al. . Multimodal evoked potentials to assess the evolution of multiple sclerosis: A longitudinal study. J Neurol Neurosurg Psychiatry (2006) 77(9):1030–5. doi: 10.1136/jnnp.2005.086280 PubMed DOI PMC
Hardmeier M, Leocani L, Fuhr P. A new role for evoked potentials in MS? repurposing evoked potentials as biomarkers for clinical trials in MS. Mult Scler (2017) 23(10):1309–19. doi: 10.1177/1352458517707265 PubMed DOI PMC
Pelayo R, Montalban X, Minoves T, Moncho D, Rio J, Nos C, et al. . Do multimodal evoked potentials add information to MRI in clinically isolated syndromes? Mult Scler (2010) 16(1):55–61. doi: 10.1177/1352458509352666 PubMed DOI
Kallmann BA, Fackelmann S, Toyka KV, Rieckmann P, Reiners K. Early abnormalities of evoked potentials and future disability in patients with multiple sclerosis. Mult Scler (2006) 12(1):58–65. doi: 10.1191/135248506ms1244oa PubMed DOI
Miller D, Barkhof F, Montalban X, Thompson A, Filippi M. Clinically isolated syndromes suggestive of multiple sclerosis, part I: Natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol (2005) 4(5):281–8. doi: 10.1016/S1474-4422(05)70071-5 PubMed DOI
Freedman MS, Selchen D, Arnold DL, Prat A, Banwell B, Yeung M, et al. . Treatment optimization in MS: Canadian MS working group updated recommendations. Can J Neurol Sci (2013) 40(3):307–23. doi: 10.1017/s0317167100014244 PubMed DOI
Kalincik T, Manouchehrinia A, Sobisek L, Jokubaitis V, Spelman T, Horakova D, et al. . Towards personalized therapy for multiple sclerosis: Prediction of individual treatment response. Brain (2017) 140(9):2426–43. doi: 10.1093/brain/awx185 PubMed DOI
Jokubaitis VG, Spelman T, Kalincik T, Lorscheider J, Havrdova E, Horakova D, et al. . Predictors of long-term disability accrual in relapse-onset multiple sclerosis. Ann Neurol (2016) 80(1):89–100. doi: 10.1002/ana.24682 PubMed DOI
Havas J, Leray E, Rollot F, Casey R, Michel L, Lejeune F, et al. . Predictive medicine in multiple sclerosis: A systematic review. Mult Scler Relat Disord (2020) 40:101928. doi: 10.1016/j.msard.2020.101928 PubMed DOI