Metabolomics of Cerebrospinal Fluid Amino and Fatty Acids in Early Stages of Multiple Sclerosis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA UK 120121
Charles University
Cooperation 38
Charles University Research Programme Cooperation 38, Neurosciences
SVVV 260648/SVV/2023
SVVV
PubMed
38003464
PubMed Central
PMC10671192
DOI
10.3390/ijms242216271
PII: ijms242216271
Knihovny.cz E-zdroje
- Klíčová slova
- CSF, MS, arginine, cerebrospinal fluid, histidine, metabolomics, multiple sclerosis,
- MeSH
- biologické markery mozkomíšní mok MeSH
- centrální nervový systém MeSH
- histidin MeSH
- lidé MeSH
- mastné kyseliny MeSH
- metabolomika MeSH
- roztroušená skleróza * diagnostické zobrazování mozkomíšní mok MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- histidin MeSH
- mastné kyseliny MeSH
Multiple sclerosis (MS) is a demyelinating and neurodegenerative autoimmune disease of the central nervous system (CNS) damaging myelin and axons. Diagnosis is based on the combination of clinical findings, magnetic resonance imaging (MRI) and analysis of cerebrospinal fluid (CSF). Metabolomics is a systematic study that allows us to track amounts of different metabolites in a chosen medium. The aim of this study was to establish metabolomic differences between the cerebrospinal fluid of patients in the early stages of multiple sclerosis and healthy controls, which could potentially serve as markers for predicting disease activity. We collected CSF from 40 patients after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS, and the CSF of 33 controls. Analyses of CSF samples were performed by using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector. Significant changes in concentrations of arginine, histidine, spermidine, glutamate, choline, tyrosine, serine, oleic acid, stearic acid and linoleic acid were observed. More prominently, Expanded Disability Status Scale values significantly correlated with lower concentrations of histidine. We conclude that these metabolites could potentially play a role as a biomarker of disease activity and predict presumable inflammatory changes.
Department of Neurology 3rd Faculty of Medicine Charles University 100 00 Prague Czech Republic
Department of Neurology Faculty Hospital Královské Vinohrady 100 34 Prague Czech Republic
National Institute of Mental Health 250 67 Klecany Czech Republic
Zobrazit více v PubMed
Schweitzer F., Laurent S., Fink G.R., Barnett M.H., Reddel S., Hartung H.-P., Warnke C. Age and the risks of high-efficacy disease modifying drugs in multiple sclerosis. Curr. Opin. Neurol. 2019;32:305–312. doi: 10.1097/WCO.0000000000000701. PubMed DOI
Van Wijmeersch B., Hartung H.-P., Vermersch P., Pugliatti M., Pozzilli C., Grigoriadis N., Alkhawajah M., Airas L., Linker R., Oreja-Guevara C. Using personalized prognosis in the treatment of relapsing multiple sclerosis: A practical guide. Front. Immunol. 2022;13:991291. doi: 10.3389/fimmu.2022.991291. PubMed DOI PMC
Hegen H., Walde J., Berek K., Arrambide G., Gnanapavan S., Kaplan B., Khalil M., Saadeh R., Teunissen C., Tumani H., et al. Cerebrospinal fluid kappa free light chains for the diagnosis of multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. J. 2023;29:169–181. doi: 10.1177/13524585221134213. PubMed DOI PMC
Patti G.J., Yanes O., Siuzdak G. Innovation: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012;13:263–269. doi: 10.1038/nrm3314. PubMed DOI PMC
Rabinowitz J.D., Purdy J.G., Vastag L., Shenk T., Koyuncu E. Metabolomics in drug target discovery. Cold Spring Harb. Symp. Quant. Biol. 2011;76:235–246. doi: 10.1101/sqb.2011.76.010694. PubMed DOI PMC
Reinke S.N., Broadhurst D.I., Sykes B.D., Baker G.B., Catz I., Warren K., Power C. Metabolomic profiling in multiple sclerosis: Insights into biomarkers and pathogenesis. Mult. Scler. J. 2014;20:1396–1400. doi: 10.1177/1352458513516528. PubMed DOI
Park S.J., Jeong I.H., Kong B.S., Lee J.-E., Kim K.H., Lee D.Y., Kim H.J. Disease Type- and Status-Specific Alteration of CSF Metabolome Coordinated with Clinical Parameters in Inflammatory Demyelinating Diseases of CNS. PLoS ONE. 2016;11:e0166277. doi: 10.1371/journal.pone.0166277. PubMed DOI PMC
Kasakin M.F., Rogachev A.D., Predtechenskaya E.V., Zaigraev V.J., Koval V.V., Pokrovsky A.G. Targeted metabolomics approach for identification of relapsing-remitting multiple sclerosis markers and evaluation of diagnostic models. Medchemcomm. 2019;10:1803–1809. doi: 10.1039/C9MD00253G. PubMed DOI PMC
Sylvestre D.A., Slupsky C.M., Aviv R.I., Swardfager W., Taha A.Y. Untargeted metabolomic analysis of plasma from relapsing-remitting multiple sclerosis patients reveals changes in metabolites associated with structural changes in brain. Brain Res. 2019;1732:146589. doi: 10.1016/j.brainres.2019.146589. PubMed DOI
Nogueras L., Gonzalo H., Jové M., Sol J., Gil-Sanchez A., Hervás J.V., Valcheva P., Gonzalez-Mingot C., Solana M.J., Peralta S., et al. Lipid profile of cerebrospinal fluid in multiple sclerosis patients: A potential tool for diagnosis. Sci. Rep. 2019;9:11313. doi: 10.1038/s41598-019-47906-x. PubMed DOI PMC
Murgia F., Lorefice L., Poddighe S., Fenu G., Secci M.A., Marrosu M.G., Cocco E., Atzori L. Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing-Remitting and Primary Progressive Multiple Sclerosis. J. Clin. Med. 2020;9:863. doi: 10.3390/jcm9030863. PubMed DOI PMC
Carlsson H., Abujrais S., Herman S., Khoonsari P.E., Åkerfeldt T., Svenningsson A., Burman J., Kultima K. Targeted metabolomics of CSF in healthy individuals and patients with secondary progressive multiple sclerosis using high-resolution mass spectrometry. Metabolomics. 2020;16:26. doi: 10.1007/s11306-020-1648-5. PubMed DOI PMC
Fitzgerald K.C., Smith M.D., Kim S., Sotirchos E.S., Kornberg M.D., Douglas M., Nourbakhsh B., Graves J., Rattan R., Poisson L., et al. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep. Med. 2021;2:100424. doi: 10.1016/j.xcrm.2021.100424. PubMed DOI PMC
Yan J., Kuzhiumparambil U., Bandodkar S., Dale R.C., Fu S. Cerebrospinal fluid metabolomics: Detection of neuroinflammation in human central nervous system disease. Clin. Transl. Immunol. 2021;10:e1318. doi: 10.1002/cti2.1318. PubMed DOI PMC
Signoriello E., Iardino P., Casertano S., De Lucia D., Pucciarelli A., Puoti G., Chiosi E., Lus G. 12-months prospective Pentraxin-3 and metabolomic evaluation in multiple sclerosis patients treated with glatiramer acetate. J. Neuroimmunol. 2020;348:577385. doi: 10.1016/j.jneuroim.2020.577385. PubMed DOI
Gonzalo H., Brieva L., Tatzber F., Jové M., Cacabelos D., Cassanyé A., Lanau-Angulo L., Boada J., Serrano J.C.E., González C., et al. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J. Neurochem. 2012;123:622–634. doi: 10.1111/j.1471-4159.2012.07934.x. PubMed DOI
de Oliveira E.M.L., Montani D.A., Oliveira-Silva D., Rodrigues-Oliveira A.F., Matas S.L.d.A., Fernandes G.B.P., da Silva I.D.C.G., Turco E.G.L. Multiple sclerosis has a distinct lipid signature in plasma and cerebrospinal fluid. Arq. Neuro-Psiquiatr. 2019;77:696–704. doi: 10.1590/0004-282x20190122. PubMed DOI
Sinclair A.J., Viant M.R., Ball A.K., Burdon M.A., Walker E.A., Stewart P.M., Rauz S., Young S.P. NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases—A diagnostic tool? NMR Biomed. 2010;23:123–132. doi: 10.1002/nbm.1428. PubMed DOI
Pieragostino D., D’Alessandro M., di Ioia M., Rossi C., Zucchelli M., Urbani A., Di Ilio C., Lugaresi A., Sacchetta P., Del Boccio P. An integrated metabolomics approach for the research of new cerebrospinal fluid biomarkers of multiple sclerosis. Mol. Biosyst. 2015;11:1563–1572. doi: 10.1039/C4MB00700J. PubMed DOI
Sarchielli P., Greco L., Floridi A., Floridi A., Gallai V. Excitatory amino acids and multiple sclerosis: Evidence from cerebrospinal fluid. Arch. Neurol. 2003;60:1082–1088. doi: 10.1001/archneur.60.8.1082. PubMed DOI
Poddighe S., Murgia F., Lorefice L., Liggi S., Cocco E., Marrosu M.G., Atzori L. Metabolomic analysis identifies altered metabolic pathways in Multiple Sclerosis. Int. J. Biochem. Cell Biol. 2017;93:148–155. doi: 10.1016/j.biocel.2017.07.004. PubMed DOI
Srinivasan R., Sailasuta N., Hurd R., Nelson S., Pelletier D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain. 2005;128:1016–1025. doi: 10.1093/brain/awh467. PubMed DOI
Cocco E., Murgia F., Lorefice L., Barberini L., Poddighe S., Frau J., Fenu G., Coghe G., Murru M.R., Murru R., et al. (1)H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2015;3:e185. doi: 10.1212/NXI.0000000000000185. PubMed DOI PMC
Podlecka-Piętowska A., Kacka A., Zakrzewska-Pniewska B., Nojszewska M., Zieminska E., Chalimoniuk M., Toczylowska B. Altered Cerebrospinal Fluid Concentrations of Hydrophobic and Hydrophilic Compounds in Early Stages of Multiple Sclerosis-Metabolic Profile Analyses. J. Mol. Neurosci. 2019;69:94–105. doi: 10.1007/s12031-019-01336-6. PubMed DOI PMC
Murgia F., Lorefice L., Noto A., Spada M., Frau J., Fenu G., Coghe G., Gagliano A., Atzori L., Cocco E. Metabolomic Changes in Patients Affected by Multiple Sclerosis and Treated with Fingolimod. Metabolites. 2023;13:428. doi: 10.3390/metabo13030428. PubMed DOI PMC
Židó M., Kačer D., Valeš K., Svobodová Z., Zimová D., Štětkárová I. Metabolomics of Cerebrospinal Fluid in Multiple Sclerosis Compared with Healthy Controls: A Pilot Study. Front. Neurol. 2022;13:874121. doi: 10.3389/fneur.2022.874121. PubMed DOI PMC
Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI
Teunissen C., Menge T., Altintas A., Álvarez-Cermeño J.C., Bertolotto A., Berven F.S., Brundin L., Comabella M., Degn M., Deisenhammer F., et al. Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis. Mult. Scler. J. 2013;19:1802–1809. doi: 10.1177/1352458513488232. PubMed DOI
Tapiero H., Mathé G., Couvreur P., Tew K.D.I. Arginine. Biomed. Pharmacother. 2002;56:439–445. doi: 10.1016/S0753-3322(02)00284-6. PubMed DOI
Koprowski H., Zheng Y.M., Heber-Katz E., Fraser N., Rorke L., Fu Z.F., Hanlon C., Dietzschold B. In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc. Natl. Acad. Sci. USA. 1993;90:3024–3027. doi: 10.1073/pnas.90.7.3024. PubMed DOI PMC
Smith K.J., Lassmann H. The role of nitric oxide in multiple sclerosis. Lancet Neurol. 2002;1:232–241. doi: 10.1016/S1474-4422(02)00102-3. PubMed DOI
Calabrese V., Scapagnini G., Ravagna A., Bella R., Foresti R., Bates T.E., Stella A.-M.G., Pennisi G. Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid protein nitrotyrosine and S-nitrosothiols and with changes in glutathione levels. J. Neurosci. Res. 2002;70:580–587. doi: 10.1002/jnr.10408. PubMed DOI
Cantoni C., Cignarella F., Ghezzi L., Mikesell B., Bollman B., Berrien-Elliott M.M., Ireland A.R., Fehniger T.A., Wu G.F., Piccio L. Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 2017;133:61–77. doi: 10.1007/s00401-016-1621-6. PubMed DOI PMC
Haas H.L., Sergeeva O.A., Selbach O. Histamine in the nervous system. Physiol. Rev. 2008;88:1183–1241. doi: 10.1152/physrev.00043.2007. PubMed DOI
Jadidi-Niaragh F., Mirshafiey A. Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology. 2010;59:180–189. doi: 10.1016/j.neuropharm.2010.05.005. PubMed DOI
Musio S., Gallo B., Scabeni S., Lapilla M., Poliani P.L., Matarese G., Ohtsu H., Galli S.J., Mantegazza R., Steinman L., et al. A key regulatory role for histamine in experimental autoimmune encephalomyelitis: Disease exacerbation in histidine decarboxylase-deficient mice. J. Immunol. 2006;176:17–26. doi: 10.4049/jimmunol.176.1.17. PubMed DOI
Loy B.D., O’Connor P.J. The effect of histamine on changes in mental energy and fatigue after a single bout of exercise. Physiol. Behav. 2016;153:7–18. doi: 10.1016/j.physbeh.2015.10.016. PubMed DOI
Loy B.D., Fling B.W., Sage K.M., Spain R.I., Horak F.B. Serum Histidine is Lower in Fatigued Women with Multiple Sclerosis. Fatigue. 2019;7:69–80. doi: 10.1080/21641846.2019.1611786. PubMed DOI PMC
Tuomisto L., Kilpeläinen H., Riekkinen P. Histamine and histamine-N-methyltransferase in the CSF of patients with multiple sclerosis. Agents Actions. 1983;13:255–257. doi: 10.1007/BF01967346. PubMed DOI
Kallweit U., Aritake K., Bassetti C.L., Blumenthal S., Hayaishi O., Linnebank M., Baumann C.R., Urade Y. Elevated CSF histamine levels in multiple sclerosis patients. Fluids Barriers CNS. 2013;10:19. doi: 10.1186/2045-8118-10-19. PubMed DOI PMC
Igarashi K., Kashiwagi K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 2010;42:39–51. doi: 10.1016/j.biocel.2009.07.009. PubMed DOI
Yang Q., Zheng C., Cao J., Cao G., Shou P., Lin L., Velletri T., Jiang M., Chen Q., Han Y., et al. Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death Differ. 2016;23:1850–1861. doi: 10.1038/cdd.2016.71. PubMed DOI PMC
Morselli E., Mariño G., Bennetzen M.V., Eisenberg T., Megalou E., Schroeder S., Cabrera S., Bénit P., Rustin P., Criollo A., et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 2011;192:615–629. doi: 10.1083/jcb.201008167. PubMed DOI PMC
Stojanovic I.R., Kostic M., Ljubisavljevic S. The role of glutamate and its receptors in multiple sclerosis. J. Neural. Transm. 2014;121:945–955. doi: 10.1007/s00702-014-1188-0. PubMed DOI
Hinzman J.M., Thomas T.C., Burmeister J.J., Quintero J.E., Huettl P., Pomerleau F., Gerhardt G.A., Lifshitz J., Carlson S.W., Yan H., et al. Diffuse brain injury elevates tonic glutamate levels and potassium-evoked glutamate release in discrete brain regions at two days post-injury: An enzyme-based microelectrode array study. J. Neurotrauma. 2010;27:889–899. doi: 10.1089/neu.2009.1238. PubMed DOI PMC
Skripuletz T., Manzel A., Gropengießer K., Schäfer N., Gudi V., Singh V., Salinas Tejedor L., Jörg S., Hammer A., Voss E., et al. Pivotal role of choline metabolites in remyelination. Brain. 2015;138:398–413. doi: 10.1093/brain/awu358. PubMed DOI
Ye L., Sun Y., Jiang Z., Wang G. L-Serine, an Endogenous Amino Acid, Is a Potential Neuroprotective Agent for Neurological Disease and Injury. Front. Mol. Neurosci. 2021;14:726665. doi: 10.3389/fnmol.2021.726665. PubMed DOI PMC
Lau L., Huganir R.L. Role of Tyrosine Phosphorylation in the Nervous System. In: Siegel G.J., Agranoff B.W., Albers R.W., Fisher S.K., Uhler M.D., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th ed. Lippincott-Raven; Philadelphia, PA, USA: 1999. [(accessed on 7 June 2023)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK28147/
Andersen S., Briggs F., Winnike J., Natanzon Y., Maichle S., Knagge K., Newby L., Gregory S. Metabolome-based signature of disease pathology in MS. Mult. Scler. Relat. Disord. 2019;31:12–21. doi: 10.1016/j.msard.2019.03.006. PubMed DOI PMC
Morell P., Quarles R.H. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th ed. Lippincott-Raven; Philadelphia, PA, USA: 1999. The myelin sheath.
Mathieu P.A., Gubiani M.F.A., Rodríguez D., Pinto L.I.G., Calcagno M.D.L., Adamo A.M. Demyelination-remyelination in the Central Nervous System: Ligand-dependent Participation of the Notch Signaling Pathway. Toxicol. Sci. 2019;171:172–192. doi: 10.1093/toxsci/kfz130. PubMed DOI
Deisenhammer F., Zetterberg H., Fitzner B., Zettl U.K. The Cerebrospinal Fluid in Multiple Sclerosis. Front. Immunol. 2019;10:726. doi: 10.3389/fimmu.2019.00726. PubMed DOI PMC
Levi I., Gurevich M., Perlman G., Magalashvili D., Menascu S., Bar N., Godneva A., Zahavi L., Chermon D., Kosower N., et al. Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis. Cell Rep. Med. 2021;2:100246. doi: 10.1016/j.xcrm.2021.100246. PubMed DOI PMC
Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS) Neurology. 1983;33:1444–1452. doi: 10.1212/WNL.33.11.1444. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 20 August 2023)]. Available online: https://www.R-project.org/
Harbo H.F., Gold R., Tintoré M. Sex and gender issues in multiple sclerosis. Ther. Adv. Neurol. Disord. 2013;6:237–248. doi: 10.1177/1756285613488434. PubMed DOI PMC