Metabolomics of Cerebrospinal Fluid Amino and Fatty Acids in Early Stages of Multiple Sclerosis

. 2023 Nov 13 ; 24 (22) : . [epub] 20231113

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38003464

Grantová podpora
GA UK 120121 Charles University
Cooperation 38 Charles University Research Programme Cooperation 38, Neurosciences
SVVV 260648/SVV/2023 SVVV

Multiple sclerosis (MS) is a demyelinating and neurodegenerative autoimmune disease of the central nervous system (CNS) damaging myelin and axons. Diagnosis is based on the combination of clinical findings, magnetic resonance imaging (MRI) and analysis of cerebrospinal fluid (CSF). Metabolomics is a systematic study that allows us to track amounts of different metabolites in a chosen medium. The aim of this study was to establish metabolomic differences between the cerebrospinal fluid of patients in the early stages of multiple sclerosis and healthy controls, which could potentially serve as markers for predicting disease activity. We collected CSF from 40 patients after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS, and the CSF of 33 controls. Analyses of CSF samples were performed by using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector. Significant changes in concentrations of arginine, histidine, spermidine, glutamate, choline, tyrosine, serine, oleic acid, stearic acid and linoleic acid were observed. More prominently, Expanded Disability Status Scale values significantly correlated with lower concentrations of histidine. We conclude that these metabolites could potentially play a role as a biomarker of disease activity and predict presumable inflammatory changes.

Zobrazit více v PubMed

Schweitzer F., Laurent S., Fink G.R., Barnett M.H., Reddel S., Hartung H.-P., Warnke C. Age and the risks of high-efficacy disease modifying drugs in multiple sclerosis. Curr. Opin. Neurol. 2019;32:305–312. doi: 10.1097/WCO.0000000000000701. PubMed DOI

Van Wijmeersch B., Hartung H.-P., Vermersch P., Pugliatti M., Pozzilli C., Grigoriadis N., Alkhawajah M., Airas L., Linker R., Oreja-Guevara C. Using personalized prognosis in the treatment of relapsing multiple sclerosis: A practical guide. Front. Immunol. 2022;13:991291. doi: 10.3389/fimmu.2022.991291. PubMed DOI PMC

Hegen H., Walde J., Berek K., Arrambide G., Gnanapavan S., Kaplan B., Khalil M., Saadeh R., Teunissen C., Tumani H., et al. Cerebrospinal fluid kappa free light chains for the diagnosis of multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. J. 2023;29:169–181. doi: 10.1177/13524585221134213. PubMed DOI PMC

Patti G.J., Yanes O., Siuzdak G. Innovation: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012;13:263–269. doi: 10.1038/nrm3314. PubMed DOI PMC

Rabinowitz J.D., Purdy J.G., Vastag L., Shenk T., Koyuncu E. Metabolomics in drug target discovery. Cold Spring Harb. Symp. Quant. Biol. 2011;76:235–246. doi: 10.1101/sqb.2011.76.010694. PubMed DOI PMC

Reinke S.N., Broadhurst D.I., Sykes B.D., Baker G.B., Catz I., Warren K., Power C. Metabolomic profiling in multiple sclerosis: Insights into biomarkers and pathogenesis. Mult. Scler. J. 2014;20:1396–1400. doi: 10.1177/1352458513516528. PubMed DOI

Park S.J., Jeong I.H., Kong B.S., Lee J.-E., Kim K.H., Lee D.Y., Kim H.J. Disease Type- and Status-Specific Alteration of CSF Metabolome Coordinated with Clinical Parameters in Inflammatory Demyelinating Diseases of CNS. PLoS ONE. 2016;11:e0166277. doi: 10.1371/journal.pone.0166277. PubMed DOI PMC

Kasakin M.F., Rogachev A.D., Predtechenskaya E.V., Zaigraev V.J., Koval V.V., Pokrovsky A.G. Targeted metabolomics approach for identification of relapsing-remitting multiple sclerosis markers and evaluation of diagnostic models. Medchemcomm. 2019;10:1803–1809. doi: 10.1039/C9MD00253G. PubMed DOI PMC

Sylvestre D.A., Slupsky C.M., Aviv R.I., Swardfager W., Taha A.Y. Untargeted metabolomic analysis of plasma from relapsing-remitting multiple sclerosis patients reveals changes in metabolites associated with structural changes in brain. Brain Res. 2019;1732:146589. doi: 10.1016/j.brainres.2019.146589. PubMed DOI

Nogueras L., Gonzalo H., Jové M., Sol J., Gil-Sanchez A., Hervás J.V., Valcheva P., Gonzalez-Mingot C., Solana M.J., Peralta S., et al. Lipid profile of cerebrospinal fluid in multiple sclerosis patients: A potential tool for diagnosis. Sci. Rep. 2019;9:11313. doi: 10.1038/s41598-019-47906-x. PubMed DOI PMC

Murgia F., Lorefice L., Poddighe S., Fenu G., Secci M.A., Marrosu M.G., Cocco E., Atzori L. Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing-Remitting and Primary Progressive Multiple Sclerosis. J. Clin. Med. 2020;9:863. doi: 10.3390/jcm9030863. PubMed DOI PMC

Carlsson H., Abujrais S., Herman S., Khoonsari P.E., Åkerfeldt T., Svenningsson A., Burman J., Kultima K. Targeted metabolomics of CSF in healthy individuals and patients with secondary progressive multiple sclerosis using high-resolution mass spectrometry. Metabolomics. 2020;16:26. doi: 10.1007/s11306-020-1648-5. PubMed DOI PMC

Fitzgerald K.C., Smith M.D., Kim S., Sotirchos E.S., Kornberg M.D., Douglas M., Nourbakhsh B., Graves J., Rattan R., Poisson L., et al. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep. Med. 2021;2:100424. doi: 10.1016/j.xcrm.2021.100424. PubMed DOI PMC

Yan J., Kuzhiumparambil U., Bandodkar S., Dale R.C., Fu S. Cerebrospinal fluid metabolomics: Detection of neuroinflammation in human central nervous system disease. Clin. Transl. Immunol. 2021;10:e1318. doi: 10.1002/cti2.1318. PubMed DOI PMC

Signoriello E., Iardino P., Casertano S., De Lucia D., Pucciarelli A., Puoti G., Chiosi E., Lus G. 12-months prospective Pentraxin-3 and metabolomic evaluation in multiple sclerosis patients treated with glatiramer acetate. J. Neuroimmunol. 2020;348:577385. doi: 10.1016/j.jneuroim.2020.577385. PubMed DOI

Gonzalo H., Brieva L., Tatzber F., Jové M., Cacabelos D., Cassanyé A., Lanau-Angulo L., Boada J., Serrano J.C.E., González C., et al. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J. Neurochem. 2012;123:622–634. doi: 10.1111/j.1471-4159.2012.07934.x. PubMed DOI

de Oliveira E.M.L., Montani D.A., Oliveira-Silva D., Rodrigues-Oliveira A.F., Matas S.L.d.A., Fernandes G.B.P., da Silva I.D.C.G., Turco E.G.L. Multiple sclerosis has a distinct lipid signature in plasma and cerebrospinal fluid. Arq. Neuro-Psiquiatr. 2019;77:696–704. doi: 10.1590/0004-282x20190122. PubMed DOI

Sinclair A.J., Viant M.R., Ball A.K., Burdon M.A., Walker E.A., Stewart P.M., Rauz S., Young S.P. NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases—A diagnostic tool? NMR Biomed. 2010;23:123–132. doi: 10.1002/nbm.1428. PubMed DOI

Pieragostino D., D’Alessandro M., di Ioia M., Rossi C., Zucchelli M., Urbani A., Di Ilio C., Lugaresi A., Sacchetta P., Del Boccio P. An integrated metabolomics approach for the research of new cerebrospinal fluid biomarkers of multiple sclerosis. Mol. Biosyst. 2015;11:1563–1572. doi: 10.1039/C4MB00700J. PubMed DOI

Sarchielli P., Greco L., Floridi A., Floridi A., Gallai V. Excitatory amino acids and multiple sclerosis: Evidence from cerebrospinal fluid. Arch. Neurol. 2003;60:1082–1088. doi: 10.1001/archneur.60.8.1082. PubMed DOI

Poddighe S., Murgia F., Lorefice L., Liggi S., Cocco E., Marrosu M.G., Atzori L. Metabolomic analysis identifies altered metabolic pathways in Multiple Sclerosis. Int. J. Biochem. Cell Biol. 2017;93:148–155. doi: 10.1016/j.biocel.2017.07.004. PubMed DOI

Srinivasan R., Sailasuta N., Hurd R., Nelson S., Pelletier D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain. 2005;128:1016–1025. doi: 10.1093/brain/awh467. PubMed DOI

Cocco E., Murgia F., Lorefice L., Barberini L., Poddighe S., Frau J., Fenu G., Coghe G., Murru M.R., Murru R., et al. (1)H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2015;3:e185. doi: 10.1212/NXI.0000000000000185. PubMed DOI PMC

Podlecka-Piętowska A., Kacka A., Zakrzewska-Pniewska B., Nojszewska M., Zieminska E., Chalimoniuk M., Toczylowska B. Altered Cerebrospinal Fluid Concentrations of Hydrophobic and Hydrophilic Compounds in Early Stages of Multiple Sclerosis-Metabolic Profile Analyses. J. Mol. Neurosci. 2019;69:94–105. doi: 10.1007/s12031-019-01336-6. PubMed DOI PMC

Murgia F., Lorefice L., Noto A., Spada M., Frau J., Fenu G., Coghe G., Gagliano A., Atzori L., Cocco E. Metabolomic Changes in Patients Affected by Multiple Sclerosis and Treated with Fingolimod. Metabolites. 2023;13:428. doi: 10.3390/metabo13030428. PubMed DOI PMC

Židó M., Kačer D., Valeš K., Svobodová Z., Zimová D., Štětkárová I. Metabolomics of Cerebrospinal Fluid in Multiple Sclerosis Compared with Healthy Controls: A Pilot Study. Front. Neurol. 2022;13:874121. doi: 10.3389/fneur.2022.874121. PubMed DOI PMC

Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI

Teunissen C., Menge T., Altintas A., Álvarez-Cermeño J.C., Bertolotto A., Berven F.S., Brundin L., Comabella M., Degn M., Deisenhammer F., et al. Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis. Mult. Scler. J. 2013;19:1802–1809. doi: 10.1177/1352458513488232. PubMed DOI

Tapiero H., Mathé G., Couvreur P., Tew K.D.I. Arginine. Biomed. Pharmacother. 2002;56:439–445. doi: 10.1016/S0753-3322(02)00284-6. PubMed DOI

Koprowski H., Zheng Y.M., Heber-Katz E., Fraser N., Rorke L., Fu Z.F., Hanlon C., Dietzschold B. In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc. Natl. Acad. Sci. USA. 1993;90:3024–3027. doi: 10.1073/pnas.90.7.3024. PubMed DOI PMC

Smith K.J., Lassmann H. The role of nitric oxide in multiple sclerosis. Lancet Neurol. 2002;1:232–241. doi: 10.1016/S1474-4422(02)00102-3. PubMed DOI

Calabrese V., Scapagnini G., Ravagna A., Bella R., Foresti R., Bates T.E., Stella A.-M.G., Pennisi G. Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid protein nitrotyrosine and S-nitrosothiols and with changes in glutathione levels. J. Neurosci. Res. 2002;70:580–587. doi: 10.1002/jnr.10408. PubMed DOI

Cantoni C., Cignarella F., Ghezzi L., Mikesell B., Bollman B., Berrien-Elliott M.M., Ireland A.R., Fehniger T.A., Wu G.F., Piccio L. Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 2017;133:61–77. doi: 10.1007/s00401-016-1621-6. PubMed DOI PMC

Haas H.L., Sergeeva O.A., Selbach O. Histamine in the nervous system. Physiol. Rev. 2008;88:1183–1241. doi: 10.1152/physrev.00043.2007. PubMed DOI

Jadidi-Niaragh F., Mirshafiey A. Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology. 2010;59:180–189. doi: 10.1016/j.neuropharm.2010.05.005. PubMed DOI

Musio S., Gallo B., Scabeni S., Lapilla M., Poliani P.L., Matarese G., Ohtsu H., Galli S.J., Mantegazza R., Steinman L., et al. A key regulatory role for histamine in experimental autoimmune encephalomyelitis: Disease exacerbation in histidine decarboxylase-deficient mice. J. Immunol. 2006;176:17–26. doi: 10.4049/jimmunol.176.1.17. PubMed DOI

Loy B.D., O’Connor P.J. The effect of histamine on changes in mental energy and fatigue after a single bout of exercise. Physiol. Behav. 2016;153:7–18. doi: 10.1016/j.physbeh.2015.10.016. PubMed DOI

Loy B.D., Fling B.W., Sage K.M., Spain R.I., Horak F.B. Serum Histidine is Lower in Fatigued Women with Multiple Sclerosis. Fatigue. 2019;7:69–80. doi: 10.1080/21641846.2019.1611786. PubMed DOI PMC

Tuomisto L., Kilpeläinen H., Riekkinen P. Histamine and histamine-N-methyltransferase in the CSF of patients with multiple sclerosis. Agents Actions. 1983;13:255–257. doi: 10.1007/BF01967346. PubMed DOI

Kallweit U., Aritake K., Bassetti C.L., Blumenthal S., Hayaishi O., Linnebank M., Baumann C.R., Urade Y. Elevated CSF histamine levels in multiple sclerosis patients. Fluids Barriers CNS. 2013;10:19. doi: 10.1186/2045-8118-10-19. PubMed DOI PMC

Igarashi K., Kashiwagi K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 2010;42:39–51. doi: 10.1016/j.biocel.2009.07.009. PubMed DOI

Yang Q., Zheng C., Cao J., Cao G., Shou P., Lin L., Velletri T., Jiang M., Chen Q., Han Y., et al. Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death Differ. 2016;23:1850–1861. doi: 10.1038/cdd.2016.71. PubMed DOI PMC

Morselli E., Mariño G., Bennetzen M.V., Eisenberg T., Megalou E., Schroeder S., Cabrera S., Bénit P., Rustin P., Criollo A., et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 2011;192:615–629. doi: 10.1083/jcb.201008167. PubMed DOI PMC

Stojanovic I.R., Kostic M., Ljubisavljevic S. The role of glutamate and its receptors in multiple sclerosis. J. Neural. Transm. 2014;121:945–955. doi: 10.1007/s00702-014-1188-0. PubMed DOI

Hinzman J.M., Thomas T.C., Burmeister J.J., Quintero J.E., Huettl P., Pomerleau F., Gerhardt G.A., Lifshitz J., Carlson S.W., Yan H., et al. Diffuse brain injury elevates tonic glutamate levels and potassium-evoked glutamate release in discrete brain regions at two days post-injury: An enzyme-based microelectrode array study. J. Neurotrauma. 2010;27:889–899. doi: 10.1089/neu.2009.1238. PubMed DOI PMC

Skripuletz T., Manzel A., Gropengießer K., Schäfer N., Gudi V., Singh V., Salinas Tejedor L., Jörg S., Hammer A., Voss E., et al. Pivotal role of choline metabolites in remyelination. Brain. 2015;138:398–413. doi: 10.1093/brain/awu358. PubMed DOI

Ye L., Sun Y., Jiang Z., Wang G. L-Serine, an Endogenous Amino Acid, Is a Potential Neuroprotective Agent for Neurological Disease and Injury. Front. Mol. Neurosci. 2021;14:726665. doi: 10.3389/fnmol.2021.726665. PubMed DOI PMC

Lau L., Huganir R.L. Role of Tyrosine Phosphorylation in the Nervous System. In: Siegel G.J., Agranoff B.W., Albers R.W., Fisher S.K., Uhler M.D., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th ed. Lippincott-Raven; Philadelphia, PA, USA: 1999. [(accessed on 7 June 2023)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK28147/

Andersen S., Briggs F., Winnike J., Natanzon Y., Maichle S., Knagge K., Newby L., Gregory S. Metabolome-based signature of disease pathology in MS. Mult. Scler. Relat. Disord. 2019;31:12–21. doi: 10.1016/j.msard.2019.03.006. PubMed DOI PMC

Morell P., Quarles R.H. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th ed. Lippincott-Raven; Philadelphia, PA, USA: 1999. The myelin sheath.

Mathieu P.A., Gubiani M.F.A., Rodríguez D., Pinto L.I.G., Calcagno M.D.L., Adamo A.M. Demyelination-remyelination in the Central Nervous System: Ligand-dependent Participation of the Notch Signaling Pathway. Toxicol. Sci. 2019;171:172–192. doi: 10.1093/toxsci/kfz130. PubMed DOI

Deisenhammer F., Zetterberg H., Fitzner B., Zettl U.K. The Cerebrospinal Fluid in Multiple Sclerosis. Front. Immunol. 2019;10:726. doi: 10.3389/fimmu.2019.00726. PubMed DOI PMC

Levi I., Gurevich M., Perlman G., Magalashvili D., Menascu S., Bar N., Godneva A., Zahavi L., Chermon D., Kosower N., et al. Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis. Cell Rep. Med. 2021;2:100246. doi: 10.1016/j.xcrm.2021.100246. PubMed DOI PMC

Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS) Neurology. 1983;33:1444–1452. doi: 10.1212/WNL.33.11.1444. PubMed DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 20 August 2023)]. Available online: https://www.R-project.org/

Harbo H.F., Gold R., Tintoré M. Sex and gender issues in multiple sclerosis. Ther. Adv. Neurol. Disord. 2013;6:237–248. doi: 10.1177/1756285613488434. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...