Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-TERMINALLY ENCODED PEPTIDE 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical, and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.
- MeSH
- Arabidopsis genetika metabolismus fyziologie MeSH
- biologický transport genetika MeSH
- fosfoproteiny metabolismus MeSH
- fyziologická adaptace * genetika MeSH
- fyziologický stres * genetika MeSH
- genetická transkripce MeSH
- kyseliny indoloctové metabolismus MeSH
- období sucha MeSH
- osmóza MeSH
- peptidy metabolismus MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- proteom metabolismus MeSH
- proteomika * MeSH
- regulace genové exprese u rostlin MeSH
- semenáček růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH