Postcopulatory sexual selection may promote evolutionary diversification in sperm form, but the contribution of between-species divergence in sperm morphology to the origin of reproductive isolation and speciation remains little understood. To assess the possible role of sperm diversification in reproductive isolation, we studied sperm morphology in two closely related bird species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (Luscinia luscinia), that hybridize in a secondary contact zone spanning Central and Eastern Europe. We found: (1) striking divergence between the species in total sperm length, accompanied by a difference in the length of the mitochondrial sperm component; (2) greater divergence between species in sperm morphology in sympatry than in allopatry, with evidence for character displacement in sperm head length detected in L. megarhynchos; (3) interspecific hybrids showing sperm with a length intermediate between the parental species, but no evidence for decreased sperm quality (the proportion of abnormal spermatozoa in ejaculates). Our results demonstrate that divergence in sperm morphology between the two nightingale species does not result in intrinsic postzygotic isolation, but may contribute to postcopulatory prezygotic isolation. This isolation could be strengthened in sympatry by reinforcement.
Sperm competition represents an important component of post-copulatory sexual selection. It has been argued that the level of sperm competition declines in birds towards the equator. However, to date, sperm competition estimates have been available mainly for avian species inhabiting the northern temperate zone. Here we apply a novel approach, using the coefficient of between-male variation (CV(bm)) in sperm size as an index for sperm competition risk, in a comparative analysis of 31 Afrotropical and 99 northern temperate zone passerine species. We found no difference in sperm competition risk between the two groups, nor any relationship with migration distance. However, a multivariate model indicated that sperm competition risk was highest in species with a combination of low body mass and few eggs per clutch. The effect of clutch size was most pronounced in tropical species, which indicates that sperm competition risk in tropical and temperate species is differently associated with particular life-history traits. Although tropical species had lower sperm competition risk than temperate zone species for overlapping clutch sizes, the idea of a generally reduced risk of sperm competition in tropical birds was not supported by our analysis.
- MeSH
- ekosystém * MeSH
- migrace zvířat MeSH
- multivariační analýza MeSH
- Passeriformes fyziologie MeSH
- roční období MeSH
- sexuální chování zvířat * MeSH
- spermie fyziologie MeSH
- velikost snůšky MeSH
- velikost těla MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH