Mechanisms of how electromagnetic (EM) field acts on biological systems are governed by the same physics regardless of the origin of the EM field (technological, atmospheric...), given that EM parameters are the same. We draw from a large body of literature of bioeffects of a man-made electromagnetic field. In this paper, we performed a focused review on selected possible mechanisms of how atmospheric electromagnetic phenomena can act at the molecular and cellular level. We first briefly review the range of frequencies and field strengths for both electric and magnetic fields in the atmosphere. Then, we focused on a concise description of the current knowledge on weak electric and magnetic field bioeffects with possible molecular mechanisms at the basis of possible EM field bioeffects combined with modeling strategies to estimate reliable outcomes and speculate about the biological effects linked to lightning or pyroelectricity. Indeed, we bring pyroelectricity as a natural source of voltage gradients previously unexplored. While very different from lightning, it can result in similar bioeffects based on similar mechanisms, which can lead to close speculations on the importance of these atmospheric electric fields in the evolution.
- MeSH
- elektřina * MeSH
- elektromagnetická pole * škodlivé účinky MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bβ-tubulin's C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols.
- MeSH
- elektrická stimulace * metody MeSH
- lidé MeSH
- simulace molekulární dynamiky * MeSH
- statická elektřina MeSH
- tubulin fyziologie MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH