While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. (©)RSNA, 2015.
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: The objective of this study was to compare evidence requirements for health technology assessment of pharmaceuticals by national agencies across Europe responsible for reimbursement decisions focusing specifically on relative effectiveness assessment. METHODS: Evidence requirements from thirty-three European countries were requested and twenty-nine national agencies provided documents to review. Data were extracted from national documents (manufacturer's submission templates and associated guidance) into a purpose-made framework with categories covering information about the health condition, the technology, clinical effectiveness and safety. RESULTS: The level of detail in the required evidence varies considerably across countries. Some countries include specific questions while others request information under general headings. Some countries include all information in a single document, which may or may not include guidance on how to complete the template. Others have specific guidance documents or methods and process manuals that help with the completion of the submission templates. Despite differences in quantity and detail, the content of the evidence requirements is broadly similar. All countries ask for information on the health technology, target disease, and clinical effectiveness and safety. However, one country only requests clinical effectiveness information as part of cost-effectiveness analyses. We found twenty-six evidence requirements for which generic answers may apply across borders and nineteen in which countries requested nationally specific information. CONCLUSIONS: This work suggests that it would be possible to put together a minimum set of evidence requirements for HTA to support reimbursement decisions across Europe which could facilitate collaboration between jurisdictions.
- MeSH
- analýza nákladů a výnosů MeSH
- hodnocení biomedicínských technologií metody normy MeSH
- léky na předpis * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
OBJECTIVE: Upper extremity (UE) transplantation is the most commonly performed composite tissue allotransplantation worldwide. However, there is a lack of imaging standards for pre- and posttransplant evaluation. This study highlights the protocols and findings of UE allotransplantation toward standardization and implementation for clinical trials. METHODS: Multimodality imaging protocols for a unilateral hand transplant candidate and a bilateral mid-forearm level UE transplant recipient include radiography, computed tomography (CT), magnetic resonance (MR) imaging, catheter angiography, and vascular ultrasonography. Pre- and posttransplant findings, including dynamic CT and MR performed for assessment of motor activity of transplanted hands, are assessed, and image quality of vessels and bones on CT and MR evaluated. RESULTS: Preoperative imaging demonstrates extensive skeletal deformity and variation in vascular anatomy and vessel patency. Posttransplant images confirm bony union in anatomical alignment and patency of vascular anastomoses. Mild differences in rate of vascular enhancement and extent of vascular networks are noted between the 2 transplanted limbs. Dynamic CT and MR demonstrate a 15° to 30° range of motion at metacarpophalangeal joints and 90° to 110° at proximal interphalangeal joints of both transplanted hands at 8 months posttransplant. Image quality was slightly better for CT than for MR in the first subject, while MR was slightly better in the second subject. CONCLUSION: Advanced vascular and musculoskeletal imaging play an important role in surgical planning and can provide novel posttransplantation data to monitor the success of the procedure. Implementation of more standardized protocols should enable a more comprehensive assessment to evaluate the efficacy in clinical trials.
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: To test the hypothesis that wide area detector face transplant surgical planning CT angiograms with simulated lower radiation dose and iterative reconstruction (AIDR3D) are comparable in image quality to those with standard tube current and filtered back projection (FBP) reconstruction. MATERIALS AND METHODS: The sinograms from 320-detector row CT angiography of four clinical candidates for face transplantation were processed utilizing standard FBP, FBP with simulated 75, 62, and 50% tube current, and AIDR3D with corresponding dose reduction. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured at muscle, fat, artery, and vein. Image quality for each reconstruction strategy was assessed by two independent readers using a 4-point scale. RESULTS: Compared to FBP, the median SNR and CNR for AIDR3D images were higher at all sites for all 4 different tube currents. The AIDR3D with simulated 50% tube current achieved comparable SNR and CNR to FBP with standard dose (median muscle SNR: 5.77 vs. 6.23; fat SNR: 6.40 vs. 5.75; artery SNR: 43.8 vs. 45.0; vein SNR: 54.9 vs. 55.7; artery CNR: 38.1 vs. 38.6; vein CNR: 49.0 vs. 48.7; all p-values >0.19). The interobserver agreement in the image quality score was good (weighted κ = 0.7). The overall score and the scores for smaller arteries were significantly lower when FBP with 50% dose reduction was used. The AIDR3D reconstruction images with 4 different simulated doses achieved a mean score ranging from 3.68 to 3.82 that were comparable to the scores from images reconstructed using FBP with original dose (3.68-3.77). CONCLUSIONS: Simulated radiation dose reduction applied to clinical CT angiography for face transplant planning suggests that AIDR3D allows for a 50% reduction in radiation dose, as compared to FBP, while preserving image quality.
- MeSH
- angiografie * MeSH
- dospělí MeSH
- lidé MeSH
- počítačová rentgenová tomografie * MeSH
- poměr signál - šum MeSH
- radiační ochrana * MeSH
- rentgenový obraz - interpretace počítačová MeSH
- transplantace obličeje * MeSH
- vztah dávky záření a odpovědi MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
OBJECTIVE: Screening for full face transplantation candidates includes computed tomographic vascular mapping of the external carotid distribution for potential arterial and venous anastomoses. The purpose of this study is to illustrate the benefits and drawbacks of cine computed tomographic imaging for preoperative vascular mapping compared with best arterial and venous phase static images. METHODS: Two image data sets were retrospectively created and compared for diagnostic findings. The first set of images was the clinical cine computed tomographic acquisition including all phases. The second set of images was composed of the best arterial and best venous phases extracted from the cine loop and determined by the quality of contrast enhancement. For each patient, the benefits and drawbacks of the cine loop were documented in consensus by a plastic surgeon and a radiologist. RESULTS: Cine loop analysis identified retrograde arterial filling not illustrated on the static images alone. Cine assessment identified most of the major vessels necessary for surgery, whereas the static images depicted small vessels more clearly, particularly in the crowded vessel takeoffs. CONCLUSIONS: Cine computed tomographic images provide data on direction of blood flow, which is important for preoperative planning. Combination of cine computed tomographic and the best static images will allow comprehensive vascular assessment necessary for future successful full face transplantation.
- Publikační typ
- časopisecké články MeSH