The weatherfish (Misgurnus fossilis) is a species that is tolerant of unfavourable environmental conditions and can survive low dissolved oxygen concentrations and high water temperatures. Although this species occurs across almost the whole of Europe, and is protected in many countries, relatively little is known regarding its ecology. To determine the diet of weatherfish, 120 individuals from an artificial drainage canal in central Poland were collected in two seasons (spring and late summer) with contrasting abiotic condition (oxygen concentration, water temperature and transparency). Analysis of gut fullness showed that weatherfish consumed a greater quantity of food in spring (0.92 ± 0.90) compared with summer (0.20 ± 0.26). Contrary to other cobitid taxa, weatherfish fed actively during daytime in both seasons. An estimate of the importance of each dietary component indicated that the most important food categories were chironomids, copepods, Asellus aquaticus and detritus. SIMPER analysis indicated that these four categories together constituted over 65.8% of cumulative dissimilarity in the diet between seasons. Additionally, trophic niche breadth differed significantly between seasons. The study demonstrated that the weatherfish is an opportunistic feeder, consuming large quantities of detritus despite possessing a gut morphology that is atypical of a detritivore. The quantity of detritus in the gut of weatherfish was positively associated with fish total length and varied seasonally, with a greater quantity of detritus in the diet in late summer. These results demonstrate the importance of detritus as a source of energy, particularly during periods of scarcity of alternative prey categories.
- MeSH
- dieta MeSH
- ekosystém MeSH
- kyslík metabolismus MeSH
- máloostní fyziologie MeSH
- neparametrická statistika MeSH
- pravděpodobnost MeSH
- roční období MeSH
- stravovací zvyklosti * MeSH
- teplota MeSH
- životní prostředí * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling-mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions.
- MeSH
- Anodonta genetika růst a vývoj fyziologie MeSH
- Cyprinidae parazitologie fyziologie MeSH
- interakce hostitele a parazita MeSH
- kladení vajíček * MeSH
- larva genetika růst a vývoj fyziologie MeSH
- rozmnožování MeSH
- učení vyhýbat se * MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH