Chronic lymphocytic leukemia (CLL) cells have variably low surface IgM (sIgM) levels/signaling capacity, influenced by chronic antigen engagement at tissue sites. Within these low levels, CLL with relatively high sIgM (CLLhigh) progresses more rapidly than CLL with low sIgM (CLLlow). During ibrutinib therapy, surviving CLL cells redistribute into the peripheral blood and can recover sIgM expression. Return of CLL cells to tissue may eventually recur, where cells with high sIgM could promote tumor growth. We analyzed time to new treatment (TTNT) following ibrutinib in 70 patients with CLL (median follow-up of 66 months) and correlated it with pretreatment sIgM levels and signaling characteristics. Pretreatment sIgM levels correlated with signaling capacity, as measured by intracellular Ca2+ mobilization (iCa2+), in vitro (r = 0.70; P < .0001). High sIgM levels/signaling strongly correlated with short TTNT (P < .05), and 36% of patients with CLLhigh vs 8% of patients with CLLlow progressed to require a new treatment. In vitro, capacity of ibrutinib to inhibit sIgM-mediated signaling inversely correlated with pretherapy sIgM levels (r = -0.68; P = .01) or iCa2+ (r = -0.71; P = .009). In patients, sIgM-mediated iCa2+ and ERK phosphorylation levels were reduced by ibrutinib therapy but not abolished. The residual signaling capacity downstream of BTK was associated with high expression of sIgM, whereas it was minimal when sIgM expression was low (P < .05). These results suggested that high sIgM levels facilitated CLL cell resistance to ibrutinib in patients. The CLL cells, surviving in the periphery with high sIgM expression, include a dangerous fraction that is able to migrate to tissue and receive proliferative stimuli, which may require targeting by combined approaches.
- MeSH
- adenin analogy a deriváty MeSH
- chronická lymfatická leukemie * metabolismus MeSH
- imunoglobulin M MeSH
- lidé MeSH
- piperidiny MeSH
- vápník MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE: PI3K signaling is a common feature of B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL), and PI3K inhibitors have been introduced into the clinic. However, there remains a clear need to develop new strategies to target PI3K signaling. PI3K activity is countered by Src homology domain 2-containing inositol-5'-phosphatase 1 (SHIP1) and, here, we have characterized the activity of a novel SHIP1 activator, AQX-435, in preclinical models of B-cell malignancies. EXPERIMENTAL DESIGN: In vitro activity of AQX-435 was evaluated using primary CLL cells and DLBCL-derived cell lines. In vivo activity of AQX-435, alone or in combination with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, was assessed using DLBCL cell line and patient-derived xenograft models. RESULTS: Pharmacologic activation of SHIP1 using AQX-435 was sufficient to inhibit anti-IgM-induced PI3K-mediated signaling, including induction of AKT phosphorylation and MYC expression, without effects on upstream SYK phosphorylation. AQX-435 also cooperated with the BTK inhibitor ibrutinib to enhance inhibition of anti-IgM-induced AKT phosphorylation. AQX-435 induced caspase-dependent apoptosis of CLL cells preferentially as compared with normal B cells, and overcame in vitro survival-promoting effects of microenvironmental stimuli. Finally, AQX-435 reduced AKT phosphorylation and growth of DLBCL in vivo and cooperated with ibrutinib for tumor growth inhibition. CONCLUSIONS: Our results using AQX-435 demonstrate that SHIP1 activation may be an effective novel therapeutic strategy for treatment of B-cell neoplasms, alone or in combination with ibrutinib.
- MeSH
- aktivátory enzymů farmakologie MeSH
- antitumorózní látky farmakologie MeSH
- apoptóza účinky léků MeSH
- chronická lymfatická leukemie farmakoterapie metabolismus patologie MeSH
- difúzní velkobuněčný B-lymfom farmakoterapie metabolismus patologie MeSH
- fosfatidylinositol-3-kinasy chemie metabolismus MeSH
- fosfatidylinositol-3,4,5-trisfosfát-5-fosfatasy genetika metabolismus MeSH
- lidé MeSH
- myši inbrední NOD MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- seskviterpeny farmakologie MeSH
- signální transdukce MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH