Treponema pallidum subsp. endemicum (TEN) is the causative agent of endemic syphilis (bejel). Until now, only a single TEN strain, Bosnia A, has been completely sequenced. The only other laboratory TEN strain available, Iraq B, was isolated in Iraq in 1951 by researchers from the US Centers for Disease Control and Prevention. In this study, the complete genome of the Iraq B strain was amplified as overlapping PCR products and sequenced using the pooled segment genome sequencing method and Illumina sequencing. Total average genome sequencing coverage reached 3469×, with a total genome size of 1,137,653 bp. Compared to the genome sequence of Bosnia A, a set of 37 single nucleotide differences, 4 indels, 2 differences in the number of tandem repetitions, and 18 differences in the length of homopolymeric regions were found in the Iraq B genome. Moreover, the tprF and tprG genes that were previously found deleted in the genome of the TEN Bosnia A strain (spanning 2.3 kb in length) were present in a subpopulation of TEN Iraq B and Bosnia A microbes, and their sequence was highly similar to those found in T. p. subsp. pertenue strains, which cause the disease yaws. The genome sequence of TEN Iraq B revealed close genetic relatedness between both available bejel-causing laboratory strains (i.e., Iraq B and Bosnia A) and also genetic variability within the bejel treponemes comparable to that found within yaws- or syphilis-causing strains. In addition, genetic relatedness to TPE strains was demonstrated by the sequence of the tprF and tprG genes found in subpopulations of both TEN Iraq B and Bosnia A. The loss of the tprF and tprG genes in most TEN microbes suggest that TEN genomes have been evolving via the loss of genomic regions, a phenomenon previously found among the treponemes causing both syphilis and rabbit syphilis.
- MeSH
- bakteriální geny MeSH
- frambézie mikrobiologie MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- infekce bakteriemi rodu Treponema mikrobiologie MeSH
- proteiny vnější bakteriální membrány genetika MeSH
- sekvenování celého genomu MeSH
- syfilis mikrobiologie MeSH
- Treponema pallidum genetika MeSH
- Treponema genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Bosna a Hercegovina MeSH
BACKGROUND: The aim of this study was to quantify the seroprevalence of hare treponematosis in European brown hare (Lepus europaeus) populations in the Czech Republic and to test for an association between treponematosis prevalence and the altitude of the areas in which hares were sampled. We tested 289 serum samples of brown hares collected between 2015 and 2017. The sampling areas included 12 districts (73 villages) distributed throughout the Czech Republic. Serum samples were tested for the presence of antibodies against the causative agent of hare treponematosis (Treponema paraluisleporidarum ecovar Lepus, TPeL) using two serological tests for human syphilis that cross-react with TPeL: the Treponema pallidum hemagglutination assay (TPHA) and the fluorescent treponemal antibody absorption (FTA-ABS) test. To account for the imperfect diagnostic sensitivity and specificity of each test, apparent prevalence estimates of TPeL were converted to true prevalence estimates using the Rogan Gladen estimator. The correlation between TPeL true seroprevalence and altitude of sampling areas was analyzed using Pearson's correlation coefficient at three levels of spatial resolution: (1) four groups, each composed of two merged districts, with ≥20 samples collected, differing in their altitude median (206, 348, 495, and 522 m above sea level); (2) separately tested eight districts, where ≥20 samples were collected per district; and (3) 27 groups composed of villages of the same altitude level distributed across the whole dataset. RESULTS: One hundred and seven of the 289 samples were seropositive to both tests, the FTA-ABS test was positive for an additional 47 samples. Seropositive samples were found in all 12 districts. True seroprevalence of TPeL in the sampled hares was 52% (95% confidence interval 46 to 58%). A statistically significant negative correlation between TPeL seroprevalence and altitude was identified at the district level (Pearson's r = - 0.722, p = 0.043). CONCLUSIONS: Between 2015 and 2017 hare treponematosis was present at a relatively high prevalence in brown hares in all 12 districts in the Czech Republic where sampling was carried out. The seroprevalence of TPeL in brown hares was negatively correlated with the altitude of the areas in which hares were sampled.
- MeSH
- infekce bakteriemi rodu Treponema epidemiologie veterinární MeSH
- nadmořská výška MeSH
- séroepidemiologické studie MeSH
- zajíci * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: Pathogenic treponemes related to Treponema pallidum are both human (causing syphilis, yaws, bejel) and animal pathogens (infections of primates, venereal spirochetosis in rabbits). A set of 11 treponemal genome sequences including those of five Treponema pallidum ssp. pallidum (TPA) strains (Nichols, DAL-1, Mexico A, SS14, Chicago), four T. p. ssp. pertenue (TPE) strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), one T. p. ssp. endemicum (TEN) strain (Bosnia A) and one strain (Cuniculi A) of Treponema paraluisleporidarum ecovar Cuniculus (TPeC) were tested for the presence of positively selected genes. METHODOLOGY/PRINCIPAL FINDINGS: A total of 1068 orthologous genes annotated in all 11 genomes were tested for the presence of positively selected genes using both site and branch-site models with CODEML (PAML package). Subsequent analyses with sequences obtained from 62 treponemal draft genomes were used for the identification of positively selected amino acid positions. Synthetic biotinylated peptides were designed to cover positively selected protein regions and these peptides were tested for reactivity with the patient's syphilis sera. Altogether, 22 positively selected genes were identified in the TP genomes and TPA sets of positively selected genes differed from TPE genes. While genetic variability among TPA strains was predominantly present in a number of genetic loci, genetic variability within TPE and TEN strains was distributed more equally along the chromosome. Several syphilitic sera were shown to react with some peptides derived from the protein sequences evolving under positive selection. CONCLUSIONS/SIGNIFICANCE: The syphilis-, yaws-, and bejel-causing strains differed relative to sets of positively selected genes. Most of the positively selected chromosomal loci were identified among the TPA treponemes. The local accumulation of genetic variability suggests that the diversification of TPA strains took place predominantly in a limited number of genomic regions compared to the more dispersed genetic diversity differentiating TPE and TEN strains. The identification of positively selected sites in tpr genes and genes encoding outer membrane proteins suggests their role during infection of human and animal hosts. The driving force for adaptive evolution at these loci thus appears to be the host immune response as supported by observed reactivity of syphilitic sera with some peptides derived from protein sequences showing adaptive evolution.
- MeSH
- bakteriální geny * MeSH
- biologická adaptace * MeSH
- dospělí MeSH
- genomika MeSH
- genotyp * MeSH
- lidé MeSH
- mladý dospělý MeSH
- selekce (genetika) MeSH
- syfilis mikrobiologie patologie MeSH
- Treponema pallidum klasifikace genetika izolace a purifikace MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Treponema pallidum subsp. pertenue (TPE) is the causative agent of yaws, a multistage disease endemic in tropical regions in Africa, Asia, Oceania, and South America. To date, seven TPE strains have been completely sequenced and analyzed including five TPE strains of human origin (CDC-2, CDC 2575, Gauthier, Ghana-051, and Samoa D) and two TPE strains isolated from the baboons (Fribourg-Blanc and LMNP-1). This study revealed the complete genome sequences of two TPE strains, Kampung Dalan K363 and Sei Geringging K403, isolated in 1990 from villages in the Pariaman region of Sumatra, Indonesia and compared these genome sequences with other known TPE genomes. METHODOLOGY/PRINCIPAL FINDINGS: The genomes were determined using the pooled segment genome sequencing method combined with the Illumina sequencing platform resulting in an average coverage depth of 1,021x and 644x for the TPE Kampung Dalan K363 and TPE Sei Geringging K403 genomes, respectively. Both Indonesian TPE strains were genetically related to each other and were more distantly related to other, previously characterized TPE strains. The modular character of several genes, including TP0136 and TP0858 gene orthologs, was identified by analysis of the corresponding sequences. To systematically detect genes potentially having a modular genetic structure, we performed a whole genome analysis-of-occurrence of direct or inverted repeats of 17 or more nucleotides in length. Besides in tpr genes, a frequent presence of repeats was found in the genetic regions spanning TP0126-TP0136, TP0856-TP0858, and TP0896 genes. CONCLUSIONS/SIGNIFICANCE: Comparisons of genome sequences of TPE Kampung Dalan K363 and Sei Geringging K403 with other TPE strains revealed a modular structure of several genomic loci including the TP0136, TP0856, and TP0858 genes. Diversification of TPE genomes appears to be facilitated by intra-strain genome recombination events.
- MeSH
- genom bakteriální * MeSH
- lidé MeSH
- pořadí genů MeSH
- rekombinace genetická MeSH
- repetitivní sekvence nukleových kyselin MeSH
- sekvenční analýza DNA * MeSH
- Treponema pallidum genetika MeSH
- výpočetní biologie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Indonésie MeSH
- MeSH
- frambézie epidemiologie mikrobiologie veterinární MeSH
- fylogeneze MeSH
- lidé MeSH
- nemoci primátů epidemiologie mikrobiologie MeSH
- primáti MeSH
- Treponema pallidum genetika izolace a purifikace fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- subsaharská Afrika MeSH
Treponema pallidum subsp. pallidum (TPA) is the infectious agent of syphilis, a disease that infects more than 5 million people annually. Since TPA is an uncultivable bacterium, most of the information on TPA genetics comes from genome sequencing and molecular typing studies. This study presents the first complete TPA genome (without sequencing gaps) of clinical isolate (UZ1974), which was obtained directly from clinical material, without multiplication in rabbits. Whole genome sequencing was performed using a newly developed Anti-Treponemal Antibody Enrichment technique combined with previously reported Pooled Segment Genome Sequencing. We identified the UW074B genome, isolated from a sample previously propagated in rabbits, to be the closest relative of the UZ1974 genome and calculated the TPA mutation rate as 2.8 x 10(-10) per site per generation.
- MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom bakteriální genetika MeSH
- králíci MeSH
- lidé MeSH
- mutační rychlost MeSH
- sekvenční analýza DNA MeSH
- sekvenování celého genomu * MeSH
- syfilis genetika mikrobiologie MeSH
- Treponema pallidum genetika patogenita MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Syphilis is an important public health problem and an increasing incidence has been noted in recent years. Characterization of strain diversity through molecular data plays a critical role in the epidemiological understanding of this re-emergence. We here propose a new high-resolution multilocus sequence typing (MLST) scheme for Treponema pallidum subsp. pallidum (TPA). We analyzed 30 complete and draft TPA genomes obtained directly from clinical samples or from rabbit propagated strains to identify suitable typing loci and tested the new scheme on 120 clinical samples collected in Switzerland and France. Our analyses yielded three loci with high discriminatory power: TP0136, TP0548, and TP0705. Together with analysis of the 23S rRNA gene mutations for macrolide resistance, we propose these loci as MLST for TPA. Among clinical samples, 23 allelic profiles as well as a high percentage (80% samples) of macrolide resistance were revealed. The new MLST has higher discriminatory power compared to previous typing schemes, enabling distinction of TPA from other treponemal bacteria, distinction between the two main TPA clades (Nichols and SS14), and differentiation of strains within these clades.
- MeSH
- alely MeSH
- antibakteriální látky farmakologie MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- genotyp MeSH
- globus pallidus MeSH
- jednonukleotidový polymorfismus MeSH
- makrolidy farmakologie MeSH
- multilokusová sekvenční typizace metody MeSH
- RNA ribozomální 23S genetika MeSH
- sekvenční analýza DNA metody MeSH
- syfilis epidemiologie MeSH
- Treponema pallidum genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Francie MeSH
- Švýcarsko MeSH
We show proof of concept for gene targets (polA, tprL, and TP_0619) that can be used in loop-mediated isothermal amplification (LAMP) assays to rapidly differentiate infection with any of the three Treponema pallidum subspecies (pallidum (TPA), pertenue (TPE), and endemicum (TEN)) and which are known to infect humans and nonhuman primates (NHPs). Four TPA, six human, and two NHP TPE strains, as well as two human TEN strains were used to establish and validate the LAMP assays. All three LAMP assays were highly specific for the target DNA. Amplification was rapid (5-15 min) and within a range of 10E+6 to 10E+2 of target DNA molecules. Performance in NHP clinical samples was similar to the one seen in human TPE strains. The newly designed LAMP assays provide proof of concept for a diagnostic tool that enhances yaws clinical diagnosis. It is highly specific for the target DNA and does not require expensive laboratory equipment. Test results can potentially be interpreted with the naked eye, which makes it suitable for the use in remote clinical settings.
- MeSH
- bakteriální proteiny genetika MeSH
- DNA bakterií genetika MeSH
- frambézie mikrobiologie MeSH
- fylogeneze MeSH
- lidé MeSH
- techniky amplifikace nukleových kyselin metody MeSH
- techniky typizace bakterií MeSH
- Treponema pallidum klasifikace genetika izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
Treponema pallidum is an uncultivable bacterium and the causative agent of syphilis (subsp. pallidum [TPA]), human yaws (subsp. pertenue [TPE]), and bejel (subsp. endemicum). Several species of nonhuman primates in Africa are infected by treponemes genetically undistinguishable from known human TPE strains. Besides Treponema pallidum, the equally uncultivable Treponema carateum causes pinta in humans. In lagomorphs, Treponema paraluisleporidarum ecovar Cuniculus and ecovar Lepus are the causative agents of rabbit and hare syphilis, respectively. All uncultivable pathogenic treponemes harbor a relatively small chromosome (1.1334-1.1405 Mbp) and show gene synteny with minimal genetic differences (>98% identity at the DNA level) between subspecies and species. While uncultivable pathogenic treponemes contain a highly conserved core genome, there are a number of highly variable and/or recombinant chromosomal loci. This is also reflected in the occurrence of intrastrain heterogeneity (genetic diversity within an infecting bacterial population). Molecular differences at several different chromosomal loci identified among TPA strains or isolates have been used for molecular typing and the epidemiological characterization of syphilis isolates. This review summarizes genome structure of uncultivable pathogenic treponemes including genetically variable regions.
- MeSH
- DNA bakterií genetika MeSH
- infekce bakteriemi rodu Treponema mikrobiologie veterinární MeSH
- králíci virologie MeSH
- Lagomorpha virologie MeSH
- lidé MeSH
- molekulární typizace MeSH
- Treponema genetika MeSH
- zvířata MeSH
- Check Tag
- králíci virologie MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
OBJECTIVE: Treponema pallidum subsp. pallidum (TPA) is the causative agent of syphilis. Genetic analyses of TPA reference strains and human clinical isolates have revealed two genetically distinct groups of syphilis-causing treponemes, called Nichols-like and SS14-like groups. So far, no genetic intermediates, i.e. strains containing a mixed pattern of Nichols-like and SS14-like genomic sequences, have been identified. Recently, Sun et al. (Oncotarget 2016. https://doi.org/10.18632/oncotarget.10154 ) described a new "phylogenetic group" (called Lineage 2) among Chinese TPA strains. This lineage exhibited a "mosaic genomic structure" of Nichols-like and SS14-like lineages. RESULTS: We reanalyzed the primary sequencing data (Project Number PRJNA305961) from the Sun et al. publication with respect to the molecular basis of Lineage 2. While Sun et al. based the analysis on several selected genomic single nucleotide variants (SNVs) and a subset of highly variable but phylogenetically poorly informative genes, which may confound the phylogenetic analysis, our reanalysis primarily focused on a complete set of whole genomic SNVs. Based on our reanalysis, only two separate TPA clusters were identified: one consisted of Nichols-like TPA strains, the other was formed by the SS14-like TPA strains, including all Chinese strains.
- MeSH
- fylogeneze * MeSH
- genom bakteriální genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- sekvenční analýza DNA * MeSH
- Treponema pallidum genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Čína MeSH