INTRODUCTION: Ziziphora clinopodioides subsp. bungeana (Juz.) Rech.f. is used in traditional medicine for various purposes. Previous phytochemical studies focused on phenolic compounds, but triterpenoids were almost overlooked. OBJECTIVE: The study focused on the isolation of compounds with dual antidiabetic activity from the aerial parts of Z. clinopodioides subsp. bungeana. MATERIALS AND METHODS: Separation of CHCl3-soluble fraction by silica gel column chromatography using different mobile phases and purification of compounds by semi-preparative HPLC or preparative TLC. The structures of pure compounds were elucidated by 1D and 2D NMR experiments along with HRMS. Compound 1 was additionally identified by the single crystal X-ray diffraction method. α-Glucosidase inhibitory assay and GLUT4 expression and translocation in C2C12 myotubes were conducted to evaluate antidiabetic potential of isolated compounds. RESULTS: This phytochemical study led to the isolation of 20 compounds, including a unique monoterpene diperoxy dimer (1). Compounds 7 and 9-11 displayed more potent α-glucosidase inhibitory activity (IC50 45.3-135.3 μM) than acarbose used as a positive control (IC50 264.7 μM), while only pomolic acid (5) increased GLUT4 translocation in C2C12 myotubes in a significant manner. CONCLUSION: Extensive chromatographic separation led to the isolation and identification of a unique monoterpene diperoxy dimer (1) from aerial parts of Z. clinopodioides subsp. bungeana. Some triterpenes inhibited α-glucosidase, another increased GLUT4 translocation. Although none of the isolated compounds demonstrated dual antidiabetic activity, selected triterpenes proved to be potent antidiabetic agents in vitro.
- MeSH
- alfa-glukosidasy metabolismus MeSH
- buněčné linie MeSH
- hluchavkovité * chemie MeSH
- hypoglykemika * farmakologie chemie izolace a purifikace MeSH
- inhibitory glykosidových hydrolas farmakologie izolace a purifikace chemie MeSH
- myši MeSH
- nadzemní části rostlin chemie MeSH
- přenašeč glukosy typ 4 metabolismus MeSH
- rostlinné extrakty chemie farmakologie MeSH
- triterpeny * farmakologie chemie izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Glutathione peroxidase 7 (GPx7) acts as an intracellular stress sensor/transmitter and plays an important role in adipocyte differentiation and the prevention of obesity related pathologies. For this reason, finding the regulatory mechanisms that control GPx7 expression is of great importance. As microRNAs (miRNAs) could participate in the regulation of GPx7 expression, we studied the inhibition of GPx7 expression by four selected miRNAs with relation to obesity and adipogenesis. The effect of the transfection of selected miRNAs mimics on GPx7 expression was tested in three cell models (HEK293, SW480, AT-MSC). The interaction of selected miRNAs with the 3'UTR of GPx7 was followed up on using a luciferase gene reporter assay. In addition, the levels of GPx7 and selected miRNAs in adipose tissue mesenchymal stem cells (AT-MSC) and mature adipocytes from four human donors were compared, with the changes in these levels during adipogenesis analyzed. Our results show for the first time that miR-137 and miR-29b bind to the 3'UTR region of GPx7 and inhibit the expression of this enzyme at the mRNA and protein level in all the human cells tested. However, no negative correlation between miR-137 nor miR-29b level and GPx7 was observed during adipogenesis. Despite the confirmed inhibition of GPx7 expression by miR-137 and miR-29b, the action of these two molecules in adipogenesis and mature adipocytes must be accompanied by other regulators.
- MeSH
- 3' nepřekládaná oblast MeSH
- adipogeneze genetika MeSH
- kmenové buňky metabolismus MeSH
- kultivované buňky MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- mikro RNA metabolismus MeSH
- nádorové buněčné linie MeSH
- peroxidasy genetika MeSH
- regulace genové exprese enzymů * MeSH
- tukové buňky metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH