The atrial septum enables efficient oxygen transport by separating the systemic and pulmonary venous blood returning to the heart. Only in placental mammals will the atrial septum form by the coming-together of the septum primum and the septum secundum. In up to one of four placental mammals, this complex morphogenesis is incomplete and yields patent foramen ovale. The incidence of incomplete atrial septum is unknown for groups with the septum primum only, such as birds and reptiles. We found a low incidence of incomplete atrial septum in 11 species of bird (0% of specimens) and 13 species of reptiles (3% of specimens). In reptiles, there was a trabecular interface between the atrial septum and the atrial epicardium which was without a clear boundary between left and right atrial cavities. In developing reptiles (four squamates and one crocodylian), the septum primum initiated as a sheet that acquired perforations and the trabecular interface developed late. We conclude that atrial septation from the septum primum only results in a low incidence of incompleteness. In reptiles, the atrial septum and atrial wall develop a trabecular interface, but previous studies on atrial hemodynamics suggest this interface has a very limited capacity for shunting.
Among lizards, only monitor lizards (Varanidae) have a functionally divided cardiac ventricle. The division results from the combined function of three partial septa, which may be homologous to the ventricular septum of mammals and archosaurs. We show in developing monitors that two septa, the 'muscular ridge' and 'bulbuslamelle', express the evolutionarily conserved transcription factors Tbx5, Irx1 and Irx2, orthologues of which mark the mammalian ventricular septum. Compaction of embryonic trabeculae contributes to the formation of these septa. The septa are positioned, however, to the right of the atrioventricular junction and they do not participate in the separation of incoming atrial blood streams. That separation is accomplished by the 'vertical septum', which expresses Tbx3 and Tbx5 and orchestrates the formation of the electrical conduction axis embedded in the ventricular septum. These expression patterns are more pronounced in monitors than in other lizards, and are associated with a deep electrical activation near the vertical septum, in contrast to the primitive base-to-apex activation of other lizards. We conclude that evolutionarily conserved transcriptional programmes may underlie the formation of the ventricular septa of monitors.
- MeSH
- časosběrné zobrazování MeSH
- echokardiografie veterinární MeSH
- embryo nesavčí MeSH
- homeodoménové proteiny genetika fyziologie MeSH
- ještěři embryologie genetika MeSH
- mezikomorová přepážka diagnostické zobrazování embryologie MeSH
- molekulární evoluce MeSH
- proteiny T-boxu genetika fyziologie MeSH
- srdeční komory diagnostické zobrazování embryologie MeSH
- srdeční síně diagnostické zobrazování embryologie MeSH
- těžké řetězce myosinu genetika metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH