In nature, proteins have evolved sophisticated cavities tailored for capturing target guests selectively among competitors of similar size, shape, and charge. The fundamental principles guiding the molecular recognition, such as self-assembly and complementarity, have inspired the development of biomimetic receptors. In the current work, we report a self-assembled triple anion helicate (host 2) featuring a cavity resembling that of the choline-binding protein ChoX, as revealed by crystal and density functional theory (DFT)-optimized structures, which binds choline in a unique dual-site-binding mode. This similarity in structure leads to a similarly high selectivity of host 2 for choline over its derivatives, as demonstrated by the NMR and fluorescence competition experiments. Furthermore, host 2 is able to act as a fluorescence displacement sensor for discriminating choline, acetylcholine, L-carnitine, and glycine betaine effectively.The choline-binding protein ChoX exhibits a synergistic dual-site binding mode that allows it to discriminate choline over structural analogues. Here, the authors design a biomimetic triple anion helicate receptor whose selectivity for choline arises from a similar binding mechanism.
- MeSH
- acetylcholin chemie metabolismus MeSH
- bakteriální proteiny chemie metabolismus MeSH
- cholin chemie metabolismus MeSH
- fosfáty chemie metabolismus MeSH
- kinetika MeSH
- kompetitivní vazba MeSH
- krystalografie rentgenová MeSH
- membránové transportní proteiny chemie metabolismus MeSH
- molekulární modely MeSH
- proteinové domény * MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- Sinorhizobium meliloti metabolismus MeSH
- transportní proteiny chemie metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH