Different types of spiral ganglion neurons (SGNs) are essential for auditory perception by transmitting complex auditory information from hair cells (HCs) to the brain. Here, we use deep, single cell transcriptomics to study the molecular mechanisms that govern their identity and organization in mice. We identify a core set of temporally patterned genes and gene regulatory networks that may contribute to the diversification of SGNs through sequential binary decisions and demonstrate a role for NEUROD1 in driving specification of a Ic-SGN phenotype. We also find that each trajectory of the decision tree is defined by initial co-expression of alternative subtype molecular controls followed by gradual shifts toward cell fate resolution. Finally, analysis of both developing SGN and HC types reveals cell-cell signaling potentially playing a role in the differentiation of SGNs. Our results indicate that SGN identities are drafted prior to birth and reveal molecular principles that shape their differentiation and will facilitate studies of their development, physiology, and dysfunction.
- MeSH
- buněčná diferenciace genetika MeSH
- ganglion spirale * MeSH
- myši MeSH
- neurony * metabolismus MeSH
- RNA metabolismus MeSH
- vláskové buňky metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Klíčová slova
- senzitivní dráhy,
- MeSH
- čití, cítění * fyziologie MeSH
- lidé MeSH
- mechanoreceptory fyziologie MeSH
- nervové dráhy anatomie a histologie fyziologie MeSH
- nocicepce fyziologie MeSH
- propriocepce fyziologie MeSH
- vnímání teploty fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix-loop-helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstream target Neurod1, to cross-regulate Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 expression for interactions with Atoh1. Upregulation of Atoh1 following Neurod1 loss changes some vestibular neurons' fate into "hair cells", highlighting the significant interplay between the bHLH genes. Further work showed that replacing Atoh1 by Neurog1 rescues some hair cells from complete absence observed in Atoh1 null mutants, suggesting that bHLH genes can partially replace one another. The inhibition of Atoh1 by Neurod1 is essential for proper neuronal cell fate, and in the absence of Neurod1, Atoh1 is upregulated, resulting in the formation of "intraganglionic" HCs. Additional genes, such as Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b, play a role in the auditory system. Finally, both Lmx1a and Lmx1b genes are essential for the cochlear organ of Corti, spiral ganglion neuron, and cochlear nuclei formation. We integrate the mammalian auditory system development to provide comprehensive insights beyond the limited perception driven by singular investigations of cochlear neurons, cochlear hair cells, and cochlear nuclei. A detailed analysis of gene expression is needed to understand better how upstream regulators facilitate gene interactions and mammalian auditory system development.
- MeSH
- kochlea cytologie metabolismus MeSH
- lidé MeSH
- neurogeneze genetika fyziologie MeSH
- transkripční faktory bHLH genetika metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- vláskové buňky metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review provides an up-to-date source of information on the primary auditory neurons or spiral ganglion neurons in the cochlea. These neurons transmit auditory information in the form of electric signals from sensory hair cells to the first auditory nuclei of the brain stem, the cochlear nuclei. Congenital and acquired neurosensory hearing loss affects millions of people worldwide. An increasing body of evidence suggest that the primary auditory neurons degenerate due to noise exposure and aging more readily than sensory cells, and thus, auditory neurons are a primary target for regenerative therapy. A better understanding of the development and function of these neurons is the ultimate goal for long-term maintenance, regeneration, and stem cell replacement therapy. In this review, we provide an overview of the key molecular factors responsible for the function and neurogenesis of the primary auditory neurons, as well as a brief introduction to stem cell research focused on the replacement and generation of auditory neurons.
- MeSH
- ganglion spirale embryologie fyziologie MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- kochlea embryologie fyziologie MeSH
- lidé MeSH
- mozkový kmen MeSH
- mutace MeSH
- myši MeSH
- neurogeneze MeSH
- neurony fyziologie MeSH
- nucleus cochlearis embryologie fyziologie MeSH
- percepční nedoslýchavost patofyziologie MeSH
- regenerativní lékařství metody MeSH
- sekvence nukleotidů MeSH
- sluchové kmenové evokované potenciály MeSH
- vláskové buňky fyziologie MeSH
- vnitřní ucho embryologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
To examine whether exposure to sodium salicylate disrupts expression of vesicular glutamate transporter 3 (VGLUT3) and whether the alteration in expression corresponds to increased risk for tinnitus. Rats were treated with saline (control) or sodium salicylate (treated) Rats were examined for tinnitus by monitoring gap-pre-pulse inhibition of the acoustic startle reflex (GPIAS). Auditory brainstem response (ABR) was applied to evaluate hearing function after treatment. Rats were sacrificed after injection to obtain the cochlea, cochlear nucleus (CN), and inferior colliculus (IC) for examination of VGLUT3 expression. No significant differences in hearing thresholds between groups were identified (p>0.05). Tinnitus in sodium salicylate-treated rats was confirmed by GPIAS. VGLUT3 encoded by solute carrier family 17 members 8 (SLC17a8) expression was significantly increased in inner hair cells (IHCs) of the cochlea in treated animals, compared with controls (p<0.01). No significant differences in VGLUT3 expression between groups were found for the cochlear nucleus (CN) or IC (p>0.05). Exposure to sodium salicylate may disrupt SLC17a8 expression in IHCs, leading to alterations that correspond to tinnitus in rats. However, the CN and IC are unaffected by exposure to sodium salicylate, suggesting that enhancement of VGLUT3 expression in IHCs may contribute to the pathogenesis of tinnitus.
- MeSH
- antiflogistika nesteroidní škodlivé účinky MeSH
- colliculus inferior účinky léků metabolismus MeSH
- nucleus cochlearis účinky léků metabolismus MeSH
- potkani Wistar MeSH
- salicylan sodný škodlivé účinky MeSH
- sluchový práh účinky léků MeSH
- tinnitus chemicky indukované MeSH
- vezikulární transportní proteiny pro glutamát metabolismus MeSH
- vnitřní vláskové buňky účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Sensorineural hearing loss and vertigo, resulting from lesions in the sensory epithelium of the inner ear, have a high incidence worldwide. The sensory epithelium of the inner ear may exhibit extreme degeneration and is transformed to flat epithelium (FE) in humans and mice with profound sensorineural hearing loss and/or vertigo. Various factors, including ototoxic drugs, noise exposure, aging, and genetic defects, can induce FE. Both hair cells and supporting cells are severely damaged in FE, and the normal cytoarchitecture of the sensory epithelium is replaced by a monolayer of very thin, flat cells of irregular contour. The pathophysiologic mechanism of FE is unclear but involves robust cell division. The cellular origin of flat cells in FE is heterogeneous; they may be transformed from supporting cells that have lost some features of supporting cells (dedifferentiation) or may have migrated from the flanking region. The epithelial-mesenchymal transition may play an important role in this process. The treatment of FE is challenging given the severe degeneration and loss of both hair cells and supporting cells. Cochlear implant or vestibular prosthesis implantation, gene therapy, and stem cell therapy show promise for the treatment of FE, although many challenges remain to be overcome.
- MeSH
- epitel zranění patologie MeSH
- epitelo-mezenchymální tranzice MeSH
- hluk škodlivé účinky MeSH
- lidé MeSH
- percepční nedoslýchavost metabolismus patologie MeSH
- vnitřní ucho zranění metabolismus patologie MeSH
- vnitřní vláskové buňky metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ear development requires the transcription factors ATOH1 for hair cell differentiation and NEUROD1 for sensory neuron development. In addition, NEUROD1 negatively regulates Atoh1 gene expression. As we previously showed that deletion of the Neurod1 gene in the cochlea results in axon guidance defects and excessive peripheral innervation of the sensory epithelium, we hypothesized that some of the innervation defects may be a result of abnormalities in NEUROD1 and ATOH1 interactions. To characterize the interdependency of ATOH1 and NEUROD1 in inner ear development, we generated a new Atoh1/Neurod1 double null conditional deletion mutant. Through careful comparison of the effects of single Atoh1 or Neurod1 gene deletion with combined double Atoh1 and Neurod1 deletion, we demonstrate that NEUROD1-ATOH1 interactions are not important for the Neurod1 null innervation phenotype. We report that neurons lacking Neurod1 can innervate the flat epithelium without any sensory hair cells or supporting cells left after Atoh1 deletion, indicating that neurons with Neurod1 deletion do not require the presence of hair cells for axon growth. Moreover, transcriptome analysis identified genes encoding axon guidance and neurite growth molecules that are dysregulated in the Neurod1 deletion mutant. Taken together, we demonstrate that much of the projections of NEUROD1-deprived inner ear sensory neurons are regulated cell-autonomously.
- MeSH
- apoptóza genetika MeSH
- axony metabolismus MeSH
- biologické modely MeSH
- buněčná diferenciace genetika MeSH
- Cortiho orgán patologie MeSH
- delece genu MeSH
- epitel metabolismus MeSH
- ganglion spirale metabolismus MeSH
- mutace genetika MeSH
- myši knockoutované MeSH
- nervová vlákna metabolismus MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- regulace genové exprese MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory bHLH genetika metabolismus MeSH
- transkripční faktory SOXB1 metabolismus MeSH
- vláskové buňky metabolismus patologie ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- hamartom * diagnóza MeSH
- imunohistochemie MeSH
- lidé MeSH
- mechanoreceptory patologie MeSH
- nádory rekta diagnóza MeSH
- rektum anatomie a histologie patologie MeSH
- Schwannovy buňky * patologie MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- MeSH
- hamartom * diagnóza MeSH
- imunohistochemie MeSH
- lidé MeSH
- mechanoreceptory patologie MeSH
- nádory rekta diagnóza MeSH
- rektum anatomie a histologie patologie MeSH
- Schwannovy buňky * patologie MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
Anatomical middle and inner ear parameters are often used to predict hearing sensitivities of mammalian species. Given that ear morphology is substantially affected both by phylogeny and body size, it is interesting to consider whether the relatively small anatomical differences expected in related species of similar size have a noticeable impact on hearing. We present a detailed anatomical description of the middle and inner ears of the red fox Vulpes vulpes, a widespread, wild carnivore for which a behavioural audiogram is available. We compare fox ears to those of the well-studied and similarly sized domestic dog and cat, taking data for dogs and cats from the literature as well as providing new measurements of basilar membrane (BM) length and hair cell numbers and densities in these animals. Our results show that the middle ear of the red fox is very similar to that of dogs. The most obvious difference from that of the cat is the lack of a fully formed bony septum in the bulla tympanica of the fox. The cochlear structures of the fox, however, are very like those of the cat, whereas dogs have a broader BM in the basal cochlea. We further report that the mass of the middle ear ossicles and the bulla volume increase with age in foxes. Overall, the ear structures of foxes, dogs and cats are anatomically very similar, and their behavioural audiograms overlap. However, the results of several published models and correlations that use middle and inner ear measurements to predict aspects of hearing were not always found to match well with audiogram data, especially when it came to the sharper tuning in the fox audiogram. This highlights that, although there is evidently a broad correspondence between structure and function, it is not always possible to draw direct links when considering more subtle differences between related species.
- MeSH
- fylogeneze * MeSH
- kočky MeSH
- lišky anatomie a histologie fyziologie MeSH
- psi MeSH
- střední ucho anatomie a histologie fyziologie MeSH
- velikost orgánu fyziologie MeSH
- velikost těla fyziologie MeSH
- vláskové buňky fyziologie MeSH
- vnitřní ucho anatomie a histologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH