A considerable number of fatal intoxications have recently been connected with the growing popularity of new psychoactive substances (NPS). Therefore, there is a significant demand for the development of fast and facile field detection methods for NPS. These substances are often sold as blends (with inorganic or organic cutting agents), which may further complicate detection. X-Ray powder diffraction (XRPD) was evaluated as a suitable and easily employable analytical method for the identification of NPS. XRPD has been successfully used for the differentiation of eight synthetic cathinones with a similar molecular structure. Moreover, this method was also used for the identification of four drugs in authentic street samples. XRPD is a facile non-destructive method that can identify not only NPS in mixtures but also the cutting agents. The small amount of substances needed for the measurement, which can be re-used for other analyses, further enhances the versatility of this method.
In this work, we studied model stratum corneum lipid mixtures composed of the hydroxylated skin ceramides N-lignoceroyl 6-hydroxysphingosine (Cer[NH]) and α-hydroxylignoceroyl phytosphingosine (Cer[AP]). Two model skin lipid mixtures of the composition Cer[NH] or Cer[AP], N-lignoceroyl sphingosine (Cer[NS]), lignoceric acid (C24:0) and cholesterol in a 0.5:0.5:1:1 molar ratio were compared. Model membranes were investigated by differential scanning calorimetry and 2H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Each component of the model mixture was specifically deuterated for selective detection by 2H NMR. Thus, the exact phase composition of the mixture at varying temperatures could be quantified. Moreover, using X-ray powder diffraction we investigated the lamellar phase formation. From the solid-state NMR and DSC studies, we found that both hydroxylated Cer[NH] and Cer[AP] exhibit a similar phase behavior. At physiological skin temperature of 32 °C, the lipids form a crystalline (orthorhombic) phase. With increasing temperature, most of the lipids become fluid and form a liquid-crystalline phase, which converts to the isotropic phase at higher temperatures (65-80 °C). Interestingly, lignoceric acid in the Cer[NH]-containing mixture has a tendency to form two types of fluid phases at 65 °C. This tendency was also observed in Cer[AP]-containing membranes at 80 °C. While Cer[AP]-containing lipid models formed a short periodicity phase featuring a repeat spacing of d = 5.4 nm, in the Cer[NH]-based model skin lipid membranes, the formation of unusual long periodicity phase with a repeat spacing of d = 10.7 nm was observed.
- MeSH
- Models, Biological MeSH
- Ceramides chemistry metabolism MeSH
- Cholesterol chemistry MeSH
- Deuterium chemistry MeSH
- Hydroxylation physiology MeSH
- Skin chemistry metabolism MeSH
- Humans MeSH
- Lipid Bilayers chemistry metabolism MeSH
- Magnetic Resonance Spectroscopy methods MeSH
- Cell Membrane Permeability MeSH
- Powder Diffraction methods MeSH
- X-Rays MeSH
- Skin Temperature physiology MeSH
- Temperature MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Analysis of C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and X-ray powder diffraction data of trospium chloride (TCl) products crystallized from different mixtures of water-ethanol [φ(EtOH) = 0.5-1.0] at various temperatures (0°C, 20°C) and initial concentrations (saturated solution, 30%-50% excess of solvent) revealed extensive structural variability of TCl. Although (13) C CP/MAS NMR spectra indicated broad variety of structural phases arising from molecular disorder, temperature-modulated DSC identified presence of two distinct components in the products. FTIR spectra revealed alterations in the hydrogen bonding network (ionic hydrogen bond formation), whereas the X-ray diffraction reflected unchanged unit cell parameters. These results were explained by a two-component character of TCl products in which a dominant polymorphic form is accompanied by partly separated nanocrystalline domains of a secondary phase that does not provide clear Bragg reflections. These phases slightly differ in the degree of molecular disorder, in the quality of crystal lattice and hydrogen bonding network. It is also demonstrated that, for the quality control of such complex products, (13) C CP/MAS NMR spectroscopy combined with factor analysis (FA) can satisfactorily be used for categorizing the individual samples: FA of (13) C CP/MAS NMR spectra found clear relationships between the extent of molecular disorder and crystallization conditions. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1235-1248, 2013.
- MeSH
- Benzilates chemistry MeSH
- Calorimetry, Differential Scanning MeSH
- X-Ray Diffraction MeSH
- Crystallization MeSH
- Magnetic Resonance Spectroscopy MeSH
- Nortropanes chemistry MeSH
- Powder Diffraction MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Four different polymorphs, A, C, D, and E, of succinobucol were isolated and characterized by means of solid-state nuclear magnetic resonance spectroscopy, single crystal and powder X-ray diffraction, differential scanning calorimetry, thermogravimetry, and attenuated total reflection-infrared spectroscopy. From a number of experiments, the same polymorphs (C, D, and E) and an equilibrium phase mixture B consisting of polymorphs C and D were repeatedly gained using different solvents or their mixtures. Although polymorph A was obtained directly from recrystallization only on few occasions, polymorphs C, D, and E proved to be metastable kinetic polymorphs, which slowly transform to a thermodynamically more stable form A during long-term storage. The single-crystal structures of polymorph C and D were determined by X-ray single-crystal diffraction.
- MeSH
- Calorimetry, Differential Scanning MeSH
- Crystallization MeSH
- Crystallography, X-Ray MeSH
- Magnetic Resonance Spectroscopy MeSH
- Models, Molecular MeSH
- Powder Diffraction MeSH
- Probucol analogs & derivatives analysis chemistry MeSH
- Spectrophotometry, Infrared MeSH
- Thermogravimetry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Mössbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3'-imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants (≈ 10(-2)s(-1)) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10(-8)-10(-6)s(-1)). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.
- MeSH
- Chemical Warfare Agents chemistry MeSH
- Water Pollutants, Chemical chemistry MeSH
- Cholinesterase Inhibitors chemistry MeSH
- Water Purification methods MeSH
- X-Ray Diffraction MeSH
- Microscopy, Electron, Scanning MeSH
- Nanoparticles chemistry ultrastructure MeSH
- Organothiophosphorus Compounds chemistry MeSH
- Oxidation-Reduction MeSH
- Powder Diffraction MeSH
- Soman chemistry MeSH
- Mustard Gas chemistry MeSH
- Iron chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The present paper deals with the preparation and characterization of a conjugate of isoniazid (INH) with the block copolymer methoxypoly(ethylene glycol)-b-poly(L-lysine) (mPEG-b-PLL). The structure of the conjugate (mPEG-b-PLL-INH) was verified by means of (1)H NMR, GPC, infrared spectroscopy, elemental analysis and powder X-ray diffraction. The conjugate contains six l-lysine units with five INH molecules, which are attached by means of pH-sensitive amidine bond. Under in vitro conditions, the conjugate is hydrolyzed and isoniazid is released (pH 4; 37 °C; t(1/2) ≈ 10 h).
Despite recent advances in solid-state NMR spectroscopy, the structural characterization of amorphous active pharmaceutical ingredients (APIs) in solid dosage forms continues to be a monumental challenge. To circumvent complications following from low concentrations of APIs in tablet formulations, we propose a new time-saving procedure based on chemometric approach: factor analysis of (19)F MAS NMR spectra. Capability of the proposed method is demonstrated on atorvastatin--a typical representative of fluorinated pharmaceutical substances exhibiting extensive polymorphism. Applying the factor analysis on the recorded (19)F MAS NMR spectra, unique parameters for every sample were derived. In this way every solid form of atorvastatin was characterized and clearly distinguishable even among various amorphous and disordered forms. The proposed method was also found to be suitable for both qualitative and quantitative analysis of mixtures of various forms of atorvastatin. Reliability of the proposed method was extensively examined by comparing the obtained results with other experimental techniques such as (13)C CP/MAS NMR, FTIR and XRPD. As highly linear correlations between the sets of parameters obtained from different experimental data were found, the perspectives of the applied comparative factor analysis to obtain detail structural view on variability of amorphous forms of atorvastatin are also discussed. Although the reported method was tested on atorvastatin, authors expect wider application for any fluorinated compound to give the routine, fast and reliable characterization of amorphous forms of APIs in drug products even at low concentrations (1-5%). Bear in mind that 20-25% of currently developed pharmaceuticals contain at least one fluorine atom in the molecule.
- MeSH
- Time Factors MeSH
- Factor Analysis, Statistical MeSH
- Fluorine chemistry MeSH
- Crystallization MeSH
- Heptanoic Acids chemistry MeSH
- Magnetic Resonance Spectroscopy methods MeSH
- Powder Diffraction MeSH
- Pyrroles chemistry MeSH
- Reproducibility of Results MeSH
- Spectroscopy, Fourier Transform Infrared methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
The paper deals with the characterisation of the bioactive phenomena of glass-ceramic scaffold derived from Bioglass® (containing 77 wt.% of crystalline phases Na(2)O·2CaO·3SiO(2) and CaO·SiO(2) and 23 wt.% of residual glass phase) using simulated body fluid (SBF) buffered with tris-(hydroxymethyl) aminomethane (TRIS). A significant effect of the TRIS buffer on glass-ceramic scaffold dissolution in SBF was detected. To better understand the influence of the buffer, the glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxymethyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The in vitro tests were provided under static and dynamic arrangements. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems.