Formation of co-transcriptional R-loops underlies replication fork stalling upon head-on transcription-replication encounters. Here, we demonstrate that RAD51-dependent replication fork reversal induced by R-loops is followed by the restart of semiconservative DNA replication mediated by RECQ1 and RECQ5 helicases, MUS81/EME1 endonuclease, RAD52 strand-annealing factor, the DNA ligase IV (LIG4)/XRCC4 complex, and the non-catalytic subunit of DNA polymerase δ, POLD3. RECQ5 disrupts RAD51 filaments assembled on stalled forks after RECQ1-mediated reverse branch migration, preventing a new round of fork reversal and facilitating fork cleavage by MUS81/EME1. MUS81-dependent DNA breaks accumulate in cells lacking RAD52 or LIG4 upon induction of R-loop formation, suggesting that RAD52 acts in concert with LIG4/XRCC4 to catalyze fork religation, thereby mediating replication restart. The resumption of DNA synthesis after R-loop-associated fork stalling also requires active transcription, the restoration of which depends on MUS81, RAD52, LIG4, and the transcription elongation factor ELL. These findings provide mechanistic insights into transcription-replication conflict resolution.
- MeSH
- DNA opravný a rekombinační protein Rad52 metabolismus MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA-ligasy metabolismus MeSH
- DNA-polymerasa III metabolismus MeSH
- endodeoxyribonukleasy metabolismus MeSH
- endonukleasy genetika metabolismus MeSH
- genetická transkripce genetika MeSH
- HeLa buňky MeSH
- helikasy RecQ metabolismus fyziologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- R-smyčka genetika fyziologie MeSH
- rekombinasa Rad51 genetika metabolismus fyziologie MeSH
- replikace DNA genetika fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study presents a simple, label-free electrochemical technique for the monitoring of DNA ligase activity. DNA ligases are enzymes that catalyze joining of breaks in the backbone of DNA and are of significant scientific interest due to their essential nature in DNA metabolism and their importance to a range of molecular biological methodologies. The electrochemical behavior of DNA at mercury and some amalgam electrodes is strongly influenced by its backbone structure, allowing a perfect discrimination between DNA molecules containing or lacking free ends. This variation in electrochemical behavior has been utilized previously for a sensitive detection of DNA damage involving the sugar-phosphate backbone breakage. Here we show that the same principle can be utilized for monitoring of a reverse process, i.e., the repair of strand breaks by action of the DNA ligases. We demonstrate applications of the electrochemical technique for a distinction between ligatable and unligatable breaks in plasmid DNA using T4 DNA ligase, as well as for studies of the DNA backbone-joining activity in recombinant fragments of E. coli DNA ligase.