Myelin oligodendrocyte glycoprotein antibody-positive disease (MOGAD) is a relatively new diagnostic entity that has emerged from the spectrum of neuromyelitis optica disorder (NMOSD), formerly also known as Devic's disease. This inflammatory autoimmune demyelinating disease affects the optic nerve, spinal cord and some other structures of the central nervous system. One of the cardinal manifestations in adult patients is optic neuritis. In children, the disease manifests as acute demyelinating encephalomyelitis (ADEM). The main diagnostic criteria are visible signs of CNS demyelination and detection of serum MOG-IgG antibodies. An attack of optic neuritis is accompanied by a severe visual deficit, which in most cases is at the level of counting fingers. A relatively good adjustment of visual functions is typical. We can quantify the severity of the eye impairment using OCT (optical coherence tomography), where, despite the good adjustment of visual functions, we find a significant loss of nerve fibers. Changes are seen in the optic nerve (pRNFL - peripapillary retinal nerve fiber layer) and macular area - ganglion cells (GCL - ganglion cell layer) and inner plexiform layer (IPL - inner plexiform layer). As a result of an attack of optic neuritis, there is a varying degree of impairment of visual functions and the optic nerve. The severity of the disability is dependent on the timely initiation of therapy and the setting of chronic therapy to prevent further attacks of the disease. Interdisciplinary cooperation between a neurologist and an ophthalmologist is very important in the diagnosis of optic neuritis.
O
n
e
m
o
c
n
ě
n
í
s
p
o
z
i
t
i
v
i
t
o
u
p
r
o
t
i
l
á
t
e
k
p
r
o
t
i
m
y
e
l
i
n
o
v
é
m
u
o
l
i
g
o
d
e
n
d
r
o
c
y
t
á
r
n
í
m
u
g
l
y
k
o
p
r
o
t
e
i
n
u
(
M
O
G
A
D
)
j
e
r
e
l
a
t
i
v
n
ě
n
o
v
á
d
i
a
g
n
o
s
t
i
c
k
á
j
e
d
n
o
t
k
a
,
k
t
e
r
á
s
e
v
y
č
l
e
n
i
l
a
z
e
s
p
e
k
t
r
a
o
n
e
m
o
c
n
ě
n
í
n
e
u
r
o
m
y
e
l
i
t
i
s
o
p
t
i
c
a
(
N
M
O
S
D
)
,
d
ř
í
v
e
n
a
z
ý
v
á
n
é
h
o
t
a
k
é
M
o
r
b
u
s
D
e
v
i
c
.
T
o
t
o
z
á
n
ě
t
l
i
v
é
a
u
t
o
i
m
u
n
i
t
n
í
d
e
m
y
e
l
i
n
i
z
a
č
n
í
o
n
e
m
o
c
n
ě
n
í
p
o
s
t
i
h
u
j
e
z
r
a
k
o
v
ý
n
e
r
v
,
m
í
c
h
u
a
n
ě
k
t
e
r
é
d
a
l
š
í
s
t
r
u
k
t
u
r
y
c
e
n
t
r
á
l
n
í
n
e
r
v
o
v
é
s
o
u
s
t
a
v
y
.
J
e
d
e
n
z
k
a
r
d
i
n
á
l
n
í
c
h
p
r
o
j
e
v
ů
u
d
o
s
p
ě
l
ý
c
h
p
a
c
i
e
n
t
ů
j
e
o
p
t
i
c
k
á
n
e
u
r
i
t
i
d
a
(
O
N
)
.
U
d
ě
t
í
s
e
o
n
e
m
o
c
n
ě
n
í
m
a
n
i
f
e
s
t
u
j
e
j
a
k
o
a
k
u
t
n
í
d
e
m
y
e
l
i
n
i
z
a
č
n
í
e
n
c
e
f
a
l
o
m
y
e
l
i
t
i
d
a
(
A
D
E
M
)
.
H
l
a
v
n
í
d
i
a
g
n
o
s
t
i
c
k
á
k
r
i
t
é
r
i
a
j
s
o
u
p
a
t
r
n
é
z
n
á
m
k
y
d
e
m
y
e
l
i
n
i
z
a
c
e
C
N
S
a
p
r
ů
k
a
z
s
é
r
o
v
ý
c
h
p
r
o
t
i
l
á
t
e
k
M
O
G
‐
I
g
G
.
A
t
a
k
u
o
p
t
i
c
k
é
n
e
u
r
i
t
i
d
y
d
o
p
r
o
v
á
z
í
t
ě
ž
k
ý
z
r
a
k
o
v
ý
d
e
f
i
c
i
t
,
k
t
e
r
ý
j
e
v
e
v
ě
t
š
i
n
ě
p
ř
í
p
a
d
ů
a
ž
n
a
ú
r
o
v
n
i
p
o
č
í
t
á
n
í
p
r
s
t
ů
.
T
y
p
i
c
k
á
j
e
r
e
l
a
t
i
v
n
ě
d
o
b
r
á
ú
p
r
a
v
a
z
r
a
k
o
v
ý
c
h
f
u
n
k
c
í
.
T
í
ž
i
o
č
n
í
h
o
p
o
s
t
i
ž
e
n
í
m
ů
ž
e
m
e
k
v
a
n
t
i
f
i
k
o
v
a
t
p
o
m
o
c
í
O
C
T
(
o
p
t
i
c
k
á
k
o
h
e
r
e
n
č
n
í
t
o
m
o
g
r
a
f
i
e
)
,
k
d
e
i
p
ř
e
s
d
o
b
r
o
u
ú
p
r
a
v
u
z
r
a
k
o
v
ý
c
h
f
u
n
k
c
í
n
a
c
h
á
z
í
m
e
v
ý
r
a
z
n
ý
ú
b
y
t
e
k
n
e
r
v
o
v
ý
c
h
v
l
á
k
e
n
.
Z
m
ě
n
y
j
s
o
u
p
a
t
r
n
é
v
o
b
l
a
s
t
i
z
r
a
k
o
v
é
h
o
n
e
r
v
u
(
p
R
N
F
L
–
p
e
r
i
p
a
p
i
l
l
a
r
y
r
e
t
i
n
a
l
n
e
r
v
e
f
i
b
e
r
l
a
y
e
r
)
a
m
a
k
u
l
á
r
n
í
o
b
l
a
s
t
i
–
g
a
n
g
l
i
o
v
é
b
u
ň
k
y
(
G
C
L
–
g
a
n
g
l
i
o
n
c
e
l
l
l
a
y
e
r
)
a
v
n
i
t
ř
n
í
p
l
e
x
i
f
o
m
n
í
v
r
s
t
v
a
(
I
P
L
–
i
n
n
e
r
p
l
e
x
i
f
o
r
m
l
a
y
e
r
)
.
N
á
s
l
e
d
k
e
m
p
r
o
b
ě
h
l
é
a
t
a
k
y
o
p
t
i
c
k
é
n
e
u
r
i
t
i
d
y
j
e
r
ů
z
n
á
m
í
r
a
p
o
s
t
i
ž
e
n
í
z
r
a
k
o
v
ý
c
h
f
u
n
k
c
í
a
o
p
t
i
c
k
é
h
o
n
e
r
v
u
.
M
í
r
a
p
o
s
t
i
ž
e
n
í
j
e
z
á
v
i
s
l
á
n
a
v
č
a
s
n
é
m
z
a
h
á
j
e
n
í
l
é
č
b
y
a
n
a
s
t
a
v
e
n
í
t
e
r
a
p
i
e
c
h
r
o
n
i
c
k
é
,
a
b
y
s
e
p
ř
e
d
e
š
l
o
d
a
l
š
í
m
a
t
a
k
á
m
o
n
e
m
o
c
n
ě
n
í
.
M
e
z
i
o
b
o
r
o
v
á
s
p
o
l
u
p
r
á
c
e
n
e
u
r
o
l
o
g
a
a
o
f
t
a
l
m
o
l
o
g
a
j
e
p
ř
i
d
i
a
g
n
o
s
t
i
c
e
o
p
t
i
c
k
ý
c
h
n
e
u
r
i
t
i
d
v
e
l
m
i
d
ů
l
e
ž
i
t
á
.
- MeSH
- lidé MeSH
- myelinový oligodendrocytární glykoprotein * imunologie MeSH
- neuromyelitis optica * diagnostické zobrazování farmakoterapie patofyziologie patologie terapie MeSH
- oči diagnostické zobrazování MeSH
- optická koherentní tomografie MeSH
- roztroušená skleróza diagnostické zobrazování komplikace MeSH
- zánět zrakového nervu diagnostické zobrazování farmakoterapie patofyziologie patologie terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Optical coherence tomography angiography (OCT-A) is a novel, non-invasive, fast, repeatable, 3D imaging method for retinal, choroidal, and optic nerve vessels. OCT-A has the potential to become a new biomarker of various ophthalmological (e.g. glaucoma, diabetic retinopathy, age-related macular degeneration) and neurological disorders. Retinal microcirculation share similar features with cerebral small blood vessels, thus OCT-A may be considered a "window" for the detection of microvascular changes which are associated with neurodegenerative disorders, such as multiple sclerosis. In this review, we summarize recent findings regarding the utility of OCT-A as a novel, prospective biomarker for early diagnosis and monitoring of multiple sclerosis.
O
C
T
‐
a
n
g
i
o
g
r
a
f
i
a
(
O
p
t
i
c
a
l
c
o
h
e
r
e
n
c
e
t
o
m
o
g
r
a
p
h
y
a
n
g
i
o
g
r
a
p
h
y
,
O
C
T
‐
A
)
j
e
n
o
v
á
,
n
e
i
n
v
a
z
í
v
n
a
,
r
ý
c
h
l
a
,
r
e
p
r
o
d
u
k
o
v
a
t
e
ľ
n
á
3
D
z
o
b
r
a
z
o
v
a
c
i
a
m
e
t
ó
d
a
c
i
e
v
s
i
e
t
n
i
c
e
,
c
i
e
v
o
v
k
y
a
z
r
a
k
o
v
é
h
o
n
e
r
v
u
.
O
C
T
‐
A
m
á
p
o
t
e
n
c
i
á
l
s
t
a
ť
s
a
n
o
v
ý
m
b
i
o
m
a
r
k
e
r
o
m
c
h
o
r
o
b
n
ý
c
h
z
m
i
e
n
s
i
e
t
n
i
c
e
p
r
i
p
o
č
e
t
n
ý
c
h
o
č
n
ý
c
h
(
n
a
p
r
.
g
l
a
u
k
ó
m
,
d
i
a
b
e
t
i
c
k
á
r
e
t
i
n
o
p
a
t
i
a
,
v
e
k
o
m
p
o
d
m
i
e
n
e
n
á
d
e
g
e
n
e
r
á
c
i
a
m
a
k
u
l
y
)
a
n
e
u
r
o
l
o
g
i
c
k
ý
c
h
c
h
o
r
o
b
á
c
h
.
R
e
t
i
n
á
l
n
a
c
i
r
k
u
l
á
c
i
a
z
o
d
p
o
v
e
d
á
c
i
r
k
u
l
á
c
i
i
d
r
o
b
n
ý
c
h
c
i
e
v
m
o
z
g
u
,
p
r
e
t
o
m
e
t
ó
d
a
O
C
T
‐
A
p
r
e
d
s
t
a
v
u
j
e
a
k
é
s
i
"
o
k
n
o
"
,
v
k
t
o
r
o
m
m
o
ž
n
o
s
l
e
d
o
v
a
ť
z
m
e
n
y
m
i
k
r
o
c
i
r
k
u
l
á
c
i
e
p
r
i
p
r
i
m
á
r
n
y
c
h
(
A
l
z
h
e
i
m
e
r
o
v
a
c
h
o
r
o
b
a
,
P
a
r
k
i
n
s
o
n
o
v
a
c
h
o
r
o
b
a
)
i
s
e
k
u
n
d
á
r
n
y
c
h
n
e
u
r
o
d
e
g
e
n
e
r
a
t
í
v
n
y
c
h
o
c
h
o
r
e
n
i
a
c
h
m
o
z
g
u
,
a
k
o
j
e
s
c
l
e
r
o
s
i
s
m
u
l
t
i
p
l
e
x
.
V
t
o
m
t
o
p
r
e
h
ľ
a
d
e
u
v
á
d
z
a
m
e
v
ý
s
l
e
d
k
y
š
t
ú
d
i
í
z
a
m
e
r
a
n
ý
c
h
n
a
O
C
T
‐
A
a
k
o
n
o
v
ý
p
e
r
s
p
e
k
t
í
v
n
y
b
i
o
m
a
r
k
e
r
v
s
k
o
r
e
j
d
i
a
g
n
o
s
t
i
k
e
i
m
o
n
i
t
o
r
o
v
a
n
í
s
c
l
e
r
o
s
i
s
m
u
l
t
i
p
l
e
x
.
- MeSH
- dospělí MeSH
- klinická studie jako téma MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrovaskulární denzita MeSH
- nervus opticus anatomie a histologie diagnostické zobrazování krevní zásobení patologie anatomie a histologie diagnostické zobrazování krevní zásobení patologie MeSH
- neurodegenerativní nemoci diagnostické zobrazování patofyziologie patologie MeSH
- oči anatomie a histologie diagnostické zobrazování krevní zásobení patologie MeSH
- oční symptomy MeSH
- optická koherentní tomografie * metody MeSH
- retina anatomie a histologie diagnostické zobrazování patologie MeSH
- roztroušená skleróza * diagnostické zobrazování patofyziologie patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- přehledy MeSH
This study measured the accuracy of traditional and validated newly proposed methods for globe positioning in lateral view. Eighty lateral head cephalograms of adult subjects from Central Europe were taken, and the actual and predicted dimensions were compared. The anteroposterior eyeball position was estimated as the most accurate method based on the proportion of the orbital height (SEE = 1.9 mm) and was followed by the "tangent to the iris method" showing SEE = 2.4 mm. The traditional "tangent to the cornea method" underestimated the eyeball projection by SEE = 5.8 mm. Concerning the superoinferior eyeball position, the results showed a deviation from a central to a more superior position by 0.3 mm, on average, and the traditional method of central positioning of the globe could not be rejected as inaccurate (SEE = 0.3 mm). Based on regression analyzes or proportionality of the orbital height, the SEE = 2.1 mm.
- MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- obličej anatomie a histologie diagnostické zobrazování MeSH
- oči anatomie a histologie diagnostické zobrazování MeSH
- počítačové zpracování obrazu MeSH
- software MeSH
- soudní antropologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- diagnostické techniky oftalmologické * MeSH
- elektrookulografie MeSH
- elektroretinografie MeSH
- fluoresceinová angiografie MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- oči diagnostické zobrazování MeSH
- optická koherentní tomografie MeSH
- tonometrie oční MeSH
- ultrasonografie metody MeSH
- zrakové evokované potenciály MeSH
- zrakové testy metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH