Although glyphosate is widely used for weed pest control, it might have negative side effects on natural enemies. Wolf spiders are one of the most representative predators found on soybean crops in Uruguay, preying on a wide variety of potential pests. However, the sublethal effects that pesticides might have on this group have been poorly explored for South American species. Herein, we explored the sublethal effects of glyphosate on the functional response of the wolf spider Hogna cf. bivittata against three potential pest insects, namely ant (Acromyrmex sp.), caterpillar (Anticarsia gemmatalis), and cricket (Miogryllus sp.). We contaminated residually adult females of the species Hogna cf. bivittata with glyphosate (Roundup®) and compared their functional response against non-contaminated spiders. We did not observe any mortality during the study. We found that overall Hogna cf. bivittata showed a functional response type II against crickets and caterpillars but no functional response to ants. Contaminated spiders killed less ants and caterpillars in comparison to the control group, probably as a consequence of the irritating effects of glyphosate. We did not observe differences in functional response to crickets at the evaluated densities, probably as a consequence of the low capture rate against this prey. Although glyphosate does not specifically target spiders, it might have negative sublethal effects on native predators such as Hogna cf. bivittata. Further studies should explore effect of glyphosate on other native predators from South American crops.
- MeSH
- Formicidae MeSH
- glycin analogy a deriváty toxicita MeSH
- Gryllidae MeSH
- můry MeSH
- pavouci účinky léků MeSH
- pesticidy toxicita MeSH
- predátorské chování účinky léků MeSH
- zemědělské plodiny MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Uruguay MeSH
Neonicotinoids are very effective in controlling crop pests but have adverse effects on predators and pollinators. Spiders are less sensitive to neonicotinoids compared to insects because of the different structure of their acetylcholine receptors, the binding targets of neonicotinoids. We tested whether short-term exposure to neonicotinoids affected the predation rate in different densities of prey of spiders and led to their paralysis or eventual death. To examine these effects, we topically exposed dominant epigeic, epiphytic and sheet-weaving farmland spiders to four widely used neonicotinoids (imidacloprid, thiamethoxam, acetamiprid and thiacloprid). We applied the neonicotinoids at concentrations recommended by the manufacturers for spray application under field conditions. Short-term exposure to the formulations of all four tested neonicotinoids had adverse effects on the predation rate of spiders, with imidacloprid (Confidor) associated with the most severe effects on the predation rate and exhibiting partial acute lethality after one hour (15-32%). Acetamiprid also displayed strong sublethal effects, particularly when applied dorsally to Philodromus cespitum. Day-long exposure to dorsally applied acetamiprid or thiacloprid led to paralysis or death of multiple Linyphiidae spp., with the effects particularly prominent in males. To conclude, we provided multiple lines of evidence that short-term exposure to neonicotinoids, which were applied at recommended field concentrations, caused severe health effects or death in multiple families of spiders. Even acetamiprid caused strong effects, despite being subject to less strict regulations in the European Union, compared with those for imidacloprid because of claims of its negligible off-target toxicity.
Even though pesticides can have various sublethal effects on behaviour of biocontrol agents, no study to date has investigated the effects of pesticides on the prey choice of generalist predators. Prey choice of generalist predators is among key factors determining the predation pressure they exert on pests, because it influences fitness of predators and consequently their densities and per capita capture rate. Here, we investigated the effect of Integro (a.i. methoxyfenozide) and SpinTor 480 Sc (a.i. spinosad) on prey choice and predatory activity of the spider Philodromus cespitum, which is known significantly to reduce hemipteran and dipteran pests in fruit orchards. We compared the prey preferences of philodromids between the psyllid pest Cacopsylla pyri (Hemiptera, Psyllidae) and beneficial Theridion sp. spiders in laboratory experiments. We found that both pesticides altered the prey preferences of philodromids. While the philodromids in a control treatment preferred theridiid spiders over the psyllid pest, philodromids in the pesticide treatments exhibited no significant prey preferences. The changes in prey preferences were caused by increased predation on the psyllids, while the predation on the theridiid remained similar. We suggest that the changes in prey preferences might theoretically be due to 1) impaired sensory systems, 2) altered taste, and/or 3) altered mobility. In combination with other studies finding reduced predation on fruit flies in P. cespitum after exposure to SpinTor, our results indicate that the sublethal effects of pesticides on predatory behaviour of generalist predators can depend on prey type and/or prey community composition.
- MeSH
- Hemiptera MeSH
- insekticidy farmakologie MeSH
- pavouci * MeSH
- predátorské chování účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Glyphosate is an herbicide that is used worldwide with potential environmental risks to nontarget organisms. We applied an age-stage, two-sex life table approach to assess the sublethal effects of short-term oral exposure to a glyphosate-based herbicide on the life table parameters and biocontrol potential of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Aphids (Metopolophium dirhodum (Walker) (Sternorrhyncha: Aphididae)) treated with herbicide (an isopropylamine-salt of glyphosate) at low recommended, maximum recommended, and double the maximum recommended concentration for agricultural situations, and untreated controls were offered to the fourth instar of H. axyridis for 24 h. Development, consumption, and fecundity were measured daily until death. We detected minor differences in the hatching rate and mean generation time, whereas the longevity, fecundity, net reproductive rate, intrinsic rate of increase, finite rate of increase, and consumption were unaffected across treatments. We conclude that biocontrol potential of H. axyridis was not affected by acute oral intoxication by a glyphosate-based herbicide during the larval stage for 24 h under the study design.
- MeSH
- biologická kontrola škůdců MeSH
- brouci účinky léků růst a vývoj fyziologie MeSH
- glycin analogy a deriváty toxicita MeSH
- insekticidy toxicita MeSH
- kukla účinky léků růst a vývoj fyziologie MeSH
- larva účinky léků růst a vývoj fyziologie MeSH
- mšice chemie růst a vývoj MeSH
- nymfa chemie růst a vývoj MeSH
- potravní řetězec * MeSH
- predátorské chování účinky léků MeSH
- zvířata MeSH
- zvláštnosti životní historie * MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In addition to their active ingredients, pesticides contain also additives - surfactants. Use of surfactants has been increasing over the past decade, but their effects on non-target organisms, especially natural enemies of pests, have been studied only very rarely. The effect of three common agrochemical surfactants on the foraging behavior of the wolf spider Pardosa agrestis was studied in the laboratory. Differences in short-term, long-term, and overall cumulative predatory activities were investigated. We found that surfactant treatment significantly affected short-term predatory activity but had no effect on long-term predatory activity. The surfactants also significantly influenced the cumulative number of killed prey. We also found the sex-specific increase in cumulative kills after surfactants treatment. This is the first study showing that pesticide additives have a sublethal effect that can weaken the predatory activity of a potential biological control agent. More studies on the effects of surfactants are needed to understand how they affect beneficial organisms in agroecosystems.
Prey-specialised predators have evolved specific cognitive adaptations that increase their prey searching efficiency. In particular, when the prey is social, selection probably favours the use of prey intraspecific chemical signals by predatory arthropods. Using a specialised ant-eating zodariid spider, Zodarion rubidum, which is known to prey on several ant species and possesses capture and venom adaptations more effective on Formicinae ants, we tested its ability to recognise chemical cues produced by several ant species. Using an olfactometer, we tested the response of Z. rubidum towards air with chemical cues from six different ant species: Camponotus ligniperda, Lasius platythorax and Formica rufibarbis (all Formicinae); and Messor structor, Myrmica scabrinodis and Tetramorium caespitum (all Myrmicinae). Z. rubidum was attracted to air carrying chemical cues only from F. rufibarbis and L. platythorax. Then, we identified that the spiders were attracted to airborne cues coming from the F. rufibarbis gaster and Dufour's gland, in particular. Finally, we found that among several synthetic blends, the decyl acetate and undecane mixture produced significant attraction of spiders. These chemicals are produced only by three Formicine genera. Furthermore, we investigated the role of these chemical cues in the communication of F. rufibarbis and found that this blend reduces their movement. This study demonstrates the chemical cognitive capacity of Z. rubidum to locate its ant prey using chemical signals produced by the ants. The innate capacity of Z. rubidum to olfactory detect different ant species is narrow, as it includes only two ant genera, confirming trophic specialisation at lower than subfamily level. The olfactory cue detected by Zodarion spiders is probably a component of the recruitment or trail pheromone.
- MeSH
- acetáty farmakologie MeSH
- alkany farmakologie MeSH
- čich fyziologie MeSH
- Formicidae chemie fyziologie MeSH
- komunikace zvířat MeSH
- pavouci účinky léků fyziologie MeSH
- podněty MeSH
- predátorské chování účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH