Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (gs ) can be ascribed to changes in guard cells functioning in amphistomateous leaves. gs was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where gs was at the highest. In contrast, genes encoding H+ -ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca2+ -vacuolar antiporters, K+ channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.
- MeSH
- genotyp MeSH
- komplementární DNA genetika izolace a purifikace MeSH
- listy rostlin genetika metabolismus MeSH
- mikroanalýza elektronovou sondou MeSH
- období sucha MeSH
- Populus klasifikace genetika metabolismus MeSH
- protonové ATPasy genetika metabolismus MeSH
- průduchy rostlin genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- RNA rostlin genetika izolace a purifikace MeSH
- rostlinné proteiny genetika metabolismus MeSH
- stromy genetika metabolismus MeSH
- transpirace rostlin fyziologie MeSH
- voda fyziologie MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In the context of climate changes, clarifying the causes underlying tree phenotypic plasticity and adaptation is crucial. Studies suggest a role of epigenetic mechanisms in response to external stimuli, raising the question whether such processes can promote acclimation of trees exposed to adverse climate conditions. Recently, we revealed an environmental epigenetic footprint in the shoot apical meristem (SAM) which could partially be transmitted mitotically, for several months, up until the winter-dormant bud in field conditions. Here, we extended our previous analysis to the leaves of the same P. deltoides×P. nigra clones. We aimed at estimating the range of developmentally, genetically, and environmentally induced variations on DNA methylation. We showed that only the first leaves emerging from the SAM displayed variations of DNA methylation under changing water conditions. We also found that these variations are genotype- and pedoclimatic site-dependent. Altogether, our data raised questions and perspectives on the direct acquisition, the maintenance of environmentally induced DNA methylation changes, and their mitotic transmission from the SAM to the first emerging leaves.
Trees are carbon dioxide sinks and major producers of terrestrial biomass with distinct seasonal growth patterns. Circadian clocks enable the coordination of physiological and biochemical temporal activities, optimally regulating multiple traits including growth. To dissect the clock's role in growth, we analysed Populus tremula × P. tremuloides trees with impaired clock function due to down-regulation of central clock components. late elongated hypocotyl (lhy-10) trees, in which expression of LHY1 and LHY2 is reduced by RNAi, have a short free-running period and show disrupted temporal regulation of gene expression and reduced growth, producing 30-40% less biomass than wild-type trees. Genes important in growth regulation were expressed with an earlier phase in lhy-10, and CYCLIN D3 expression was misaligned and arrhythmic. Levels of cytokinins were lower in lhy-10 trees, which also showed a change in the time of peak expression of genes associated with cell division and growth. However, auxin levels were not altered in lhy-10 trees, and the size of the lignification zone in the stem showed a relative increase. The reduced growth rate and anatomical features of lhy-10 trees were mainly caused by misregulation of cell division, which may have resulted from impaired clock function.
- MeSH
- biomasa MeSH
- buněčné dělení genetika MeSH
- cirkadiánní hodiny genetika MeSH
- cytokininy metabolismus MeSH
- geneticky modifikované rostliny MeSH
- kambium fyziologie MeSH
- kyseliny indoloctové metabolismus MeSH
- lignin metabolismus MeSH
- metabolom MeSH
- metabolomika MeSH
- mutace genetika MeSH
- Populus cytologie genetika růst a vývoj MeSH
- regulace genové exprese u rostlin * MeSH
- RNA interference MeSH
- rostlinné proteiny genetika metabolismus MeSH
- stromy cytologie genetika růst a vývoj MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Camu-camu [Myrciaria dubia (Kunth) McVaugh] is currently an important and promising fruit species grown in the Peruvian Amazon, as well as in Brazil, Colombia, and Bolivia. The species is valued for its high content of fruit-based vitamin C. Large plantations have been established only in the last two decades, and a substantial part of the production is still obtained by collecting fruits from the wild. Domestication of the species is at an early stage; most farmers cultivate the plants without any breeding, or only through a simple mass selection process. The main objective of the study was to characterize morphological and genetic variation within and among cultivated and natural populations of camu-camu in the Peruvian Amazon. In total, we sampled 13 populations: ten wild in the Iquitos region, and three cultivated in the Pucallpa region in the Peruvian Amazon. To assess the genetic diversity using seven microsatellite loci, we analyzed samples from ten individual trees per each population (n = 126). Morphological data was collected from five trees from each population (n = 65). The analysis did not reveal statistically significant differences for most of the morphological descriptors. For wild and cultivated populations, the observed heterozygosity was 0.347 and 0.404 (expected 0.516 and 0.506), and the fixation index was 0.328 and 0.200, respectively. Wild populations could be divided into two groups according to the UPGMA and STRUCTURE analysis. In cultivated populations, their approximate origin was determined. Our findings indicate a high genetic diversity among the populations, but also a high degree of inbreeding within the populations. This can be explained by either the isolation of these populations from each other or the low number of individuals in some populations. This high level of genetic diversity can be explored for the selection of superior individuals for further breeding.
- MeSH
- DNA rostlinná genetika MeSH
- genetická variace genetika MeSH
- mikrosatelitní repetice genetika MeSH
- Myrtaceae anatomie a histologie genetika MeSH
- ovoce anatomie a histologie genetika MeSH
- stromy anatomie a histologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Peru MeSH
SHORT-ROOT (SHR) is a GRAS transcription factor first characterized for its role in the specification of the stem cell niche and radial patterning in Arabidopsis thaliana (At) roots. Three SHR-like genes have been identified in Populus trichocarpa (Pt). PtSHR1 shares high similarity with AtSHR over the entire length of the coding sequence. The two other Populus SHR-like genes, PtSHR2A and PtSHR2B, are shorter in their 5' ends when compared with AtSHR. Unlike PtSHR1, that is expressed throughout the cambial zone of greenhouse-grown Populus trees, PtSHR2Bprom:uidA expression was detected in the phellogen. Additionally, PtSHR1 and PtSHR2B expression patterns markedly differ in the shoot apex and roots of in vitro plants. Transgenic hybrid aspen expressing PtSHR2B under the 35S constitutive promoter showed overall reduced tree growth while the proportion of bark increased relative to the wood. Reverse transcription-quantitative PCR (RT-qPCR) revealed increased transcript levels of cytokinin metabolism and response-related genes in the transgenic plants consistent with an increase of total cytokinin levels. This was confirmed by cytokinin quantification by LC-MS/MS. Our results indicate that PtSHR2B appears to function in the phellogen and therefore in the regulation of phellem and periderm formation, possibly acting through modulation of cytokinin homeostasis. Furthermore, this work points to a functional diversification of SHR after the divergence of the Populus and Arabidopsis lineages. This finding may contribute to selection and breeding strategies of cork oak in which, unlike Populus, the phellogen is active throughout the entire tree lifespan, being at the basis of a highly profitable cork industry.
- MeSH
- cytokininy metabolismus MeSH
- dřevo genetika MeSH
- fenotyp MeSH
- geneticky modifikované rostliny MeSH
- hybridizace genetická MeSH
- kambium genetika MeSH
- Populus genetika růst a vývoj MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- stonky rostlin anatomie a histologie genetika MeSH
- stromy genetika růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI0/RC, φD0 and φP0 (Fv/Fm) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET0/RC parameter, which indicates electron-transport flux from QA to QB per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype × environment interaction (G × E) was detected, i.e., no differences in genotypes' performance between sites. The absence of significant G × E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is selectively neutral.
- MeSH
- borovice lesní genetika fyziologie MeSH
- chlorofyl fyziologie MeSH
- fluorescence MeSH
- fotosyntetická reakční centra (proteinové komplexy) fyziologie MeSH
- fotosyntéza genetika MeSH
- fotosystém II (proteinový komplex) fyziologie MeSH
- genetická variace * MeSH
- genotyp * MeSH
- kvantitativní znak dědičný * MeSH
- lesy MeSH
- rostlinné geny MeSH
- stromy genetika fyziologie MeSH
- světlo MeSH
- transport elektronů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH