Introduction. The fungal pathogen Aspergillus fumigatus can induce prolonged colonization of the lungs of susceptible patients, resulting in conditions such as allergic bronchopulmonary aspergillosis and chronic pulmonary aspergillosis.Hypothesis. Analysis of the A. fumigatus secretome released during sub-lethal infection of G. mellonella larvae may give an insight into products released during prolonged human colonisation.Methodology.Galleria mellonella larvae were infected with A. fumigatus, and the metabolism of host carbohydrate and proteins and production of fungal virulence factors were analysed. Label-free qualitative proteomic analysis was performed to identify fungal proteins in larvae at 96 hours post-infection and also to identify changes in the Galleria proteome as a result of infection.Results. Infected larvae demonstrated increasing concentrations of gliotoxin and siderophore and displayed reduced amounts of haemolymph carbohydrate and protein. Fungal proteins (399) were detected by qualitative proteomic analysis in cell-free haemolymph at 96 hours and could be categorized into seven groups, including virulence (n = 25), stress response (n = 34), DNA repair and replication (n = 39), translation (n = 22), metabolism (n = 42), released intracellular (n = 28) and cellular development and cell cycle (n = 53). Analysis of the Gallerial proteome at 96 hours post-infection revealed changes in the abundance of proteins associated with immune function, metabolism, cellular structure, insect development, transcription/translation and detoxification.Conclusion. Characterizing the impact of the fungal secretome on the host may provide an insight into how A. fumigatus damages tissue and suppresses the immune response during long-term pulmonary colonization.
- MeSH
- Aspergillus fumigatus * metabolismus MeSH
- aspergilóza mikrobiologie metabolismus MeSH
- faktory virulence metabolismus MeSH
- fungální proteiny * metabolismus genetika MeSH
- hemolymfa mikrobiologie metabolismus MeSH
- larva * mikrobiologie MeSH
- můry * mikrobiologie MeSH
- proteom analýza MeSH
- proteomika MeSH
- sekretom metabolismus MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In the temperate climates of central Europe and North America, two distinct honeybee (Apis mellifera) populations are found in colonies: short-living summer bees emerge in spring and survive until summer, whereas long-living winter bees emerge in late August and overwinter. Besides the difference in their life spans, each of these populations fulfils a different role in the colonies and individual bees have distinct physiological and immunological adaptations depending on their roles. For instance, winter worker bees have higher vitellogenin levels and larger reserves of nutrients in the fat body than summer bees. The differences between the immune systems of both populations are well described at the constitutive level; however, our knowledge of its inducibility is still very limited. In this study, we focus on the response of 10-day-old honeybee workers to immune challenges triggered in vivo by injecting heat-killed bacteria, with particular focus on honeybees that emerge and live under hive conditions. Responses to bacterial injections differed between summer and winter bees. Winter bees exhibited a more intense response, including higher expression of antimicrobial genes and antimicrobial activity, as well as a significant decrease in vitellogenin gene expression and its concentration in the hemolymph. The intense immune response observed in winter honeybees may contribute to our understanding of the relationships between colony fitness and infection with pathogens, as well as its association with successful overwintering.
- MeSH
- imunita * MeSH
- roční období MeSH
- včely MeSH
- vitelogeniny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH