Circulating-tumor DNA
Dotaz
Zobrazit nápovědu
Úvod: Kolorektální karcinom (KRK) je celosvětově třetím nejčastějším zhoubným onemocněním. Stadium onemocnění v době diagnózy a záchyt časné rekurence mají přímý vliv na přežívání pacientů. Stávající kontrolní vyšetřovací metody často neodrážejí průběh metastazujícího onemocnění v reálném čase. U pacientů s detekovatelnou cirkulující nádorovou DNA (ctDNA) může být tento marker účinným monitorujícím nástrojem. Kazuistika: V roce 2012 jsme na našem pracovišti provedli resekci sigmatu u 57letého pacienta pro pokročilý karcinom. V rámci pravidelných dispenzárních kontrol pacient podstupoval zobrazovací vyšetření, odběry krve na CA 19-9 a CEA, endoskopii. Zároveň jsme odebírali vzorek periferní krve ke stanovení hladiny ctDNA. Její hodnota po celou dobu odpovídala vývoji nemoci. Dvakrát předstihla v diagnostice zobrazovací metody. CEA vykazoval určitou míru nespolehlivosti, zejména po delší době trvání nemoci. CA 19-9 byl po celou dobu v rozmezí normálních hodnot. Závěr: ctDNA je účinným nástrojem v diagnostice rekurence metastazujícího KRK. U pacientů s detekovatelnou ctDNA její hladina koreluje s přítomností nádorové masy v reálném čase. Má prediktivní význam při sledování odpovědi na léčbu. Její implementace do sledování pacientů s KRK může mít vliv na volbu léčebné strategie a přežívání pacientů.
Introduction: Colorectal cancer (CRC) is the third most common malignant disease worldwide. The stage of the disease at the time of diagnosis and the capture of an early recurrence have a direct impact on long-term survival. Existing control screening methods often do not reflect real-time metastatic disease. In patients with detectable circulating tumor DNA (ctDNA), liquid biopsy can be an effective monitoring tool.Case report: In 2012, we performed sigmoid resection in a 57 years old patient for advanced CRC. The follow-up assessments included: blood samples for CA 19-9 and CEA, endoscopy and imaging methods. We also sampled peripheral blood to determine the level of ctDNA. Its value corresponded to the development of the disease throughout the period. Twice it outperformed imaging methods. CEA showed some degree of unreliability, especially after prolonged illness. CA 19-9 was in the normal range at all times. Conclusion: Circulating tumor DNA is an effective tool in the diagnosis of recurrent metastatic CRC. In patients with detectable ctDNA, its level correlates with the tumoral mass in real time. It has a predictive value in monitoring the treatment response. Its implementation in the follow-up of patients with CRC may have an impact on the choice of treatment strategy and consequently on patient survival.
- MeSH
- cirkulující nádorová DNA * krev MeSH
- kolorektální nádory * chirurgie diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- metastázy nádorů diagnóza terapie MeSH
- nádorové biomarkery analýza MeSH
- protokoly protinádorové léčby MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- práce podpořená grantem MeSH
Somatic mutations of genes involved in NF-κB, PI3K/AKT, NOTCH, and JAK/STAT signaling pathways play an important role in the pathogenesis of Hodgkin lymphoma (HL). HL tumor cells form only about 5% of the tumor mass; however, it was shown that HL tumor-derived DNA could be detected in the bloodstream. This circulating tumor DNA (ctDNA) reflects the genetic profile of HL tumor cells and can be used for qualitative and quantitative analysis of tumor-specific somatic DNA mutations within the concept of liquid biopsy. Overall, the most frequently mutated gene in HL is STAT6; however, the exact spectrum of mutations differs between individual HL histological subtypes. Importantly, reduction of ctDNA plasma levels after initial treatment is highly correlated with prognosis. Therefore, ctDNA shows great promise as a novel tool for non-invasive tumor genome analysis for biomarker driven therapy as well as for superior minimal residual disease monitoring and treatment resistance detection. Here, we summarize the recent advancements of ctDNA analysis in HL with focus on ctDNA detection methodologies, genetic profiling of HL and its clonal evolution, and the emerging prognostic value of ctDNA.
- MeSH
- cirkulující nádorová DNA * genetika MeSH
- DNA nádorová genetika MeSH
- fosfatidylinositol-3-kinasy MeSH
- Hodgkinova nemoc * diagnóza genetika MeSH
- lidé MeSH
- mutace MeSH
- nádorové biomarkery genetika MeSH
- NF-kappa B MeSH
- protoonkogenní proteiny c-akt MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Východiská: V managemente pacientov s kolorektálnym karcinómom (colorectal cancer – CRC) stále existuje priestor pre zlepšenie stratifikácie rizika a tým presnejšie „ušitie“ liečby na mieru. Veľmi sľubným sa v tomto ohľade javia biomarkery získavané prostredníctvom takzvanej tekutej biopsie, čo je neinvazívna metóda odberu telesných tekutín pacienta, najčastejšie periférnej krvi. Analyzujú sa rozličné biomarkery súvisiace s nádorom, ktoré môžu mať ako prognostickú, tak aj prediktívnu hodnotu. Jedným z najviac prebádaných nádorových biomarkerov je práve nádorová cirkulujúca DNA, ktorej spektrum využitia bolo spočiatku len u pokročilých a metastatických karcinómov a spočívalo v molekulárnom profilovaní alebo zisťovaní získanej rezistencie k liečbe. V súčasnosti sa využitie cirkulujúcej nádorovej DNA (ctDNA) posunulo už k skorým štádiám karcinómov, kde okrem iného slúži k identifikácii minimálnej reziduálnej choroby alebo k skorej diagnostike CRC. Doterajšie štúdie ukazujú veľmi sľubný potenciál týchto biomarkerov, ale k využitiu v klinickej praxi bude potrebné získať viac informácií a počkať na výsledky prebiehajúcich výskumov. Cieľ: V tomto prehľadovom článku sa budeme venovať ctDNA, jej aspektom, možnostiam diagnostiky a súčasnému využitiu v rámci CRC.
Background: Space still exists in the management of patients with colorectal cancer (CRC) for improving risk stratification and thus the precision of treatment tailoring. Quite promising in this regard are biomarkers acquired via liquid biopsy, which is a non-invasive method of body fluid draw, most commonly peripheral blood. A variety of biomarkers associated with the tumor are analyzed, which can have either prognostic or predictive value. Circulating tumor DNA (ctDNA) is one of the most explored tumor biomarkers. Initially, its utility spectrum was only in advanced or metastatic cancers and consisted of molecular profiling and detecting acquired resistance to treatment. Nowadays, the use of circulating tumor DNA has shifted to earlier cancer stages, where it can identify minimal residual disease or diagnose colorectal cancer early. Existing studies show promising potential of these biomarkers, but more information needs to be gathered and information from ongoing studies needs to be obtained in order to use them in everyday practice. Aim: In this review article, we will discuss ctDNA, its aspects, diag- nostic possibilities and current use in CRC.
Nalezení dostatečně citlivé metody pro detekci a monitorování onkologických onemocnění, která by zároveň nepředstavovala zbytečnou zátěž pro pacienta, je dlouholetou výzvou v nádorové diagnostice. Ideálním cílem jsou neinvazivní biomarkery – biologické molekuly, které by bylo možné detekovat z krve, a které by podaly co nejpřesnější obraz o stavu a vývoji onemocnění. V podstatě všechny typy nádorových buněk obsahují somatické mutace, které jim umožňují neregulovaně růst a vyvíjet se. Tyto mutace jsou přítomny pouze v DNA nádorových buněk a představují tedy vhodný biomarker. Genotypizace nádorových tkání se stává v klinické onkologii běžným postupem, má však své limity. Biopsie tkáně podává informaci jen o velmi malé lokalitě nádoru v konkrétním čase odběru a v některých případech je obtížné nebo téměř nemožné vzorek vůbec odebrat. Navíc, jako každá invazivní metoda, představuje zátěž pro pacienty. Řešením by se mohla stát analýza cirkulující nádorové DNA odebrané přímo z krve – tzv. tekuté biopsie. Umírající nádorové buňky uvolňují fragmenty své DNA do krevního oběhu, odkud mohou být izolovány, a díky novým citlivým a přesným metodám podrobeny analýze genomových změn. Tyto změny se navíc v čase vyvíjejí, protože nádorové onemocnění je charakterizováno postupnou evolucí a schopností selektovat nové mutace přinášející růstové výhody či rezistenci k aplikované léčbě. Nezachycení těchto změn je přitom častou příčinou neúspěchu léčby. Současné technologické pokroky v detekci a charakterizaci cirkulující nádorové DNA by mohly umožnit monitorování vývoje nádoru v reálném čase a stát se vodítkem pro včasné a přesné rozhodnutí o nejvhodnější léčbě.
Pursuing sensitive methods for detection and monitoring of oncologic diseases, that would limit the stress for patients, represents a long‑standing challenge in cancer diagnostics. As an ideal non‑invasive biomarkers may be considered‑ biological molecules that can be detected in blood and that provide most relevant picture about the state and development of disease. In fact, all types of cancer cells carry somatic mutations that enable the cells to escape from regulation and to grow and progress. These mutations are only present in the DNA of tumor cells and thus are hallmarks of cancer cells. Genotyping of tumor tissues becomes a common technique in clinical oncology, but it has its limits. Tissue biopsy only yields information about a very small area of tumor at the time of extraction and in some cases it is difficult or impossible to obtain the tissue sample. Furthermore, it is an invasive method that can stress patients. Analysis of circulating tumor DNA from blood – the so‑called liquid biopsy – represents one possible solution. Dying tumor cells release fragments of their DNA into the blood stream. From blood, they can be isolated and subjected to analysis using new, sensitive and precise methods that detect genomic changes. These changes are evolving over time because cancer disease is characterized by evolution and ability to select new mutations that bring growth advantages or resistance to treatment. Our inability to capture the heterogeneity during tumor development is one of the major reasons responsible for failure of cancer treatment. Recent technological progress in detection and characterization of circulating DNA could enable tumor evolution monitoring in real time and become a guideline for an accurate and prompt treatment choice. Key words: circulating tumor DNA – tumor biomarkers – biopsy – liquid biopsy – blood – mutation This study was supported by the European Regional Development Fund and the State Budget of the Czech Republic – RECAMO, CZ.1.05./2.1.00/03.0101, by the project MEYS – NPS I – LO1413, GACR 13-00956S, MH CZ – DRO (MMCI, 00209805) and BBMRI_CZ (LM2010004). The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers. Submitted: 7. 4. 2015 Accepted: 3. 7. 2015
- MeSH
- biopsie MeSH
- DNA nádorová * genetika krev MeSH
- genetické techniky MeSH
- lidé MeSH
- mutace MeSH
- nádorové biomarkery * genetika krev MeSH
- nádorové cirkulující buňky * MeSH
- nádory genetika krev patologie MeSH
- tekutá biopsie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Circulating tumor cells are most often released into the blood or lymph from the primary tumor. They are distributed by circulation to other tissues, where they can form metastases. In clinical practice, these cells have a high potential because their collection is non-invasive and, in addition, their early detection and molecular characterization allow the choice of appropriate therapy and continuous monitoring of the effectiveness of anticancer treatment. This paper describes the mechanisms of penetration of tumor cells into the circulation, the possibilities of their survival in the bloodstream and ways of settling in the new organ microenvironment. It also focuses on various ways of separating these cells from the sample and the possibility of their subsequent detection.
Voľná cirkulujúca nádorová DNA (circulating tumour DNA – ctDNA) je typ extracelulárnej voľnej DNA (circulating cell-free DNA – cfDNA) uvoľňovaná do krvi pacientov s onkologickým ochorením apoptózou a nekrózou nádorových buniek. Predstavuje alternatívny biomarker, ktorého kvalitatívna i kvantitatívna analýza môže, doplňujúc zobrazovacie vyšetrenie, spresniť hodnotenie liečebnej odpovede u pacientov s Hodgkinovým lymfómom. Ako dynamický parameter by si svoje uplatnenie mohla nájsť pri upresňovaní diagnózy, v skríningu mutácií a pri vstupnej stratifikácii pacienta podľa rizika, v priebehu liečby a po jej ukončení pri hodnotení jej účinnosti aj v ďalšom sledovaní za účelom včasnej predikcie prípadného relapsu.
Circulating tumour DNA (ctDNA) is a type of extracellular circulating cell-free DNA (ccfDNA, cfDNA) released into the blood of cancer patients by apoptosis and necrosis of tumour cells. It represents an alternative biomarker for the qualitative and quantitative analysis that may together with PET/CT imaging refine the assessment of treatment response in patients with Hodgkin lymphoma. As a dynamic parameter, it could be applied for refining diagnosis, initial screening for mutations and patient risk stratification. During treatment and at its the end, it could be used to evaluate treatment efficacy and may also be useful for further monitoring and relapse prediction.
- MeSH
- cirkulující nádorová DNA * analýza MeSH
- Hodgkinova nemoc * diagnóza terapie MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- tekutá biopsie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Karcinom prostaty (KP) je nejčastější nádorové onemocnění u mužů. Prognóza pacientů s metastatickým onemocněním je nepříznivá, ačkoliv v tomto stadiu existují velké rozdíly v kvalitě života a době přežívání. Definice prognózy je nezbytná pro volbu léčebného postupu, který respektuje individuální riziko progrese onemocnění. Mezi základní prognostické parametry u metastatického onemocnění patří Gleasonovo skóre nádoru, hladina prostatického specifického antigenu (PSA), výkonnostní stav a další laboratorní markery. V posledních letech se v predikci odpovědi na protinádorovou léčbu uplatňuje detekce cirkulujících nádorových buněk (CTC), které jsou nezbytnou součástí metastatického procesu. Stanovení CTC využívá znalostí nádorově specifických antigenů na povrchu buněk. Jednotlivé metody stanovují CTC s různou citlivostí a zatím nejsou využitelné u lokalizovaného stadia KP. Pouze metoda imunomagnetické separace a semiautomatické vizualizace (CellSearchTM) byla validována a schválena FDA pro použití v diagnostice a léčbě metastatického KP. Stanovení počtu CTC přímo koreluje s prognózou pacientů s kastračně rezistentním KP a je dynamičtějším markerem celkového přežití než hladina PSA. Změna v hodnotách CTC v průběhu léčby také výrazně zpřesňuje odhad rizika úmrtí. Nové postupy kultivace a genového profilování CTC mohou přispět k individualizaci léčby podobně jako u karcinomu prsu. Autoři předkládají přehledné informace o teorii, metodách detekce a klinickém využití CTC u kastračně rezistentního KP.
Prostate cancer (PC) is the most common malignant disease in men. Prognosis of patients with metastatic PC is generally unfavourable; however there are significant differences in survival at this stage of the disease. The definition of prognosis is essential for the selection of therapy, respecting an individual risk. In recent years, the association between circulating tumor cells (CTC) detection and response to PC treatment has been widely investigated. Detection of CTC is based on a metastatic process theory and uses well-known tumor-specific antigens on the cell surface. Individual methods assess CTC with different sensitivity and are not yet efficient at the localised PC stage. Only the method of immunomagnetic separation and semi-automatic visualisation (CellSearchTM) has been validated and approved for the use in the PC management. Assessment of the CTC count directly correlates with the prognosis of patients with castration-resistant PC. Change in the CTC count during the therapy also considerably improves risk estimation and represents a marker of overall survival. New methods of CTC cultivation and gene profiling may contribute to individualisation of the treatment similarly to breast cancer. The authors present a review article about theory, methods of detection and clinical use of CTC in castration-resistant PC.
- MeSH
- DNA nádorová MeSH
- imunomagnetická separace * metody MeSH
- kvantitativní polymerázová řetězová reakce metody MeSH
- lidé MeSH
- nádorové biomarkery * krev MeSH
- nádorové cirkulující buňky * MeSH
- nádory prostaty * krev MeSH
- prognóza MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: Despite advances in early detection and therapies, cancer is still one of the most common causes of death worldwide. Since each tumor is unique, there is a need to implement personalized care and develop robust tools for monitoring treatment response to assess drug efficacy and prevent disease relapse. MAIN BODY: Recent developments in liquid biopsies have enabled real-time noninvasive monitoring of tumor burden through the detection of molecules shed by tumors in the blood. These molecules include circulating tumor nucleic acids (ctNAs), comprising cell-free DNA or RNA molecules passively and/or actively released from tumor cells. Often highlighted for their diagnostic, predictive, and prognostic potential, these biomarkers possess valuable information about tumor characteristics and evolution. While circulating tumor DNA (ctDNA) has been in the spotlight for the last decade, less is known about circulating tumor RNA (ctRNA). There are unanswered questions about why some tumors shed high amounts of ctNAs while others have undetectable levels. Also, there are gaps in our understanding of associations between tumor evolution and ctNA characteristics and shedding kinetics. In this review, we summarize current knowledge about ctNA biology and release mechanisms and put this information into the context of tumor evolution and clinical utility. CONCLUSIONS: A deeper understanding of the biology of ctDNA and ctRNA may inform the use of liquid biopsies in personalized medicine to improve cancer patient outcomes.
Pancreatic ductal adenocarcinoma represents a disease with increasing incidence. Its prognosis is the worst among all malignancies despite the aggressive combined multimodal treatment across all stages. In metastatic disease, median survival is approximatelly one year. The mainstay of treatment is chemotherapy (neo/adjuvant, palliative) and in selected subgroups of patients even radiotherapy. Nevertheless, nowadays there are very few prognostic and/or predictive biomarkers available that can be used to identify and better stratify patients based on risk to tailored treatment. Potentially, promising areas of research are circulating tumor cells and circulating tumor DNA, which can be easily obtained from peripheral blood - so called liquid biopsy. They may serve as a tool to assess response to applied treatment, and to detect the emergence of treatment-resistant clones or early disease relapse. Moreover, their study may allow identification of potentially tumor-specific alterations, which may serve as target structures for targeted (tailored) therapy. Alternatively, different prognostic indexes/scores calculated by analysis of selected parameters of blood and/or biochemistry can be used to better stratify patients based on risk and better predict prognosis. The aim of this mini-review is to provide a basic overview of the current state of the art in this area and its potential significance for clinical practice.
- MeSH
- cirkulující nádorová DNA * genetika MeSH
- duktální karcinom slinivky břišní * diagnóza genetika terapie MeSH
- lidé MeSH
- lokální recidiva nádoru MeSH
- nádorové biomarkery genetika MeSH
- nádorové cirkulující buňky * MeSH
- nádory slinivky břišní * diagnóza genetika terapie MeSH
- prognóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH