Freshwater biodiversity is globally threatened by various factors while severe weather events like long-term droughts may be substantially devastating. In order to remain in contact with the water or stay in a sufficiently humid environment at drying localities, the ability to withstand desiccation by dwelling in the hyporheic zone, particularly through vertical burrowing is crucial. We assessed the ability of three European native and five non-native crayfish as models to survive and construct vertical burrows in a humid sandy-clayey substrate under a simulated one-week drought. Three native species (Astacus astacus, A. leptodactylus, and Austropotamobius torrentium) suffered extensive mortalities. Survival of non-native species was substantially higher while all specimens of Cherax destructor and Procambarus clarkii survived. The native species and Pacifastacus leniusculus exhibited no ability to construct vertical burrows. Procambarus fallax f. virginalis and P. clarkii constructed bigger and deeper burrows than C. destructor and Orconectes limosus. In the context of predicted weather fluctuations, the ability to withstand desiccation through constructing vertical burrows into the hyporheic zone under drought conditions might play a significant role in the success of particular crayfish species, as well as a wide range of further hyporheic-dwelling aquatic organisms in general.
- MeSH
- analýza přežití MeSH
- biodiverzita MeSH
- biologické modely MeSH
- období sucha * MeSH
- severní raci klasifikace fyziologie MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The phylogenetic relationships among imported ornamental crayfish belonging to the genus Cherax were inferred from a combined dataset of 3 mitochondrial genes (COI, 16S and 12S) and by comparison with available GenBank sequences of 14 Cherax species. Furthermore, the concordance of previously described species obtained from a wholesaler (Cherax boesemani, C. holthuisi and C. peknyi) with available GenBank sequences was verified based on COI with special respect to comparison with sequences assigned as Cherax species. Recently described species C. gherardiae, C. pulcher and C. subterigneus belong to the northern group of Cherax species. Comparison and analysis with other GenBank COI sequences show previously unreported diversity of New Guinean species, suggesting 5 putative new species. Surprisingly, species assigned to the subgenus Astaconephrops do not form a monophyletic clade; this subgenus should be reappraised relative to the purported typical morphological characteristic of the uncalcified patch on male chelae. Increasing importation of crayfish underscores the importance of accurate species identification. Use of basic molecular methods is a necessary requisite for documenting occurrence, abundance and population trends of target species. Consequently, it helps to support eventual conservation decision-making by stakeholders.
- MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- mitochondriální DNA genetika MeSH
- respirační komplex IV genetika MeSH
- RNA ribozomální 16S genetika MeSH
- RNA ribozomální genetika MeSH
- severní raci klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Nová Guinea MeSH
Cherax (Astaconephrops) gherardii n. sp. is a moderate burrowing crayfish endemic to the Ajamaru Lakes of West Papua, Indonesia. This species is one of the crayfish species from this region that are exploited for ornamental purposes. Its commonly used commercial name in the pet trade is "Rainbow Crayfish" or "Blue Moon Crayfish", and its native name is "udang kuku biru". The new species is genetically and morphologically similar to Cherax boesemani, however, both species may be easily distinguished morphologically or by using sequence divergence, which is substantial for considering C. gherardii n. sp. to be a valid species.
- MeSH
- anatomické struktury zvířat anatomie a histologie růst a vývoj MeSH
- ekosystém MeSH
- rozšíření zvířat MeSH
- severní raci anatomie a histologie klasifikace genetika růst a vývoj MeSH
- velikost orgánu MeSH
- velikost těla MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Indonésie MeSH
This study reports about the spermatozoal ultrastructure of three species of astacid crayfish, i.e., the stone crayfish Austropotamobius torrentium, signal crayfish Pacifastacus leniusculus, and noble crayfish Astacus astacus. The acrosome is a cup shaped and electron-dense structure at the anterior of the spermatozoon and comprises three layers of differing electron densities filled with parallel filaments that extend from the base to the apical zone. The acrosome was significantly longer in A. astacus than in P. leniusculus and the shortest acrosome belongs to A. torrentium. The width of the acrosome was significantly narrower in A. torrentium than in P. leniusculus and the widest acrosome belongs to A. astacus. The L:W ratio was significantly greater in A. torrentium than in P. leniusculus and the lowest ratio belongs to A. astacus. Radial arms are visible on each side of the acrosome or nucleus in sagittal view and wrap around the spermatozoon. Each radial arm comprises a parallel bundle of microtubules arranged along the long axis within a sheath. The nucleus, with decondensed material, is located in the posterior of the cell. All parts of the spermatozoon are tightly enclosed within an extracellular capsule. Despite a well-conserved general structure and similarity of pattern among these spermatozoa, differences in the dimensions of the acrosome within the studied species may be useful to help distinguish the different crayfish species.