phenanthrene (PHE)
Dotaz
Zobrazit nápovědu
The study is focused on artificial soil which is supposed to be a standardized "soil like" medium. We compared physico-chemical properties and extractability of Phenanthrene from 25 artificial soils prepared according to OECD standardized procedures at different laboratories. A substantial range of soil properties was found, also for parameters which should be standardized because they have an important influence on the bioavailability of pollutants (e.g. total organic carbon ranged from 1.4 to 6.1%). The extractability of Phe was measured by supercritical fluid extraction (SFE) at harsh and mild conditions. Highly variable Phe extractability from different soils (3-89%) was observed. The extractability was strongly related (R(2)=0.87) to total organic carbon content, 0.1-2mm particle size, and humic/fulvic acid ratio in the following multiple regression model: SFE (%)=1.35*sand (%)-0.77*TOC (%)2+0.27*HA/FA.
The effect of phenanthrene (Phe) on induction of ethoxyresorufinO-deethylase (EROD) activity and oxidative stress was examined in immune organs of yellowfin seabream Acanthopagrus latus. Fish were treated with a single intraperitoneal injection at 2, 20, or 40 mg kg-1. The Phe concentration in spleen, EROD activity, superoxide dismutase (SOD) and catalase (CAT) activity, ascorbic acid (AsA), total glutathione (GSH), lipid peroxidation (LPO), and protein carbonylation (PC) levels in spleen and head kidney were assessed at one, four, seven, and 14 days post-injection. Dose response relationship was explored for data on day four. Phe concentration reached the highest observed level on day four, showed decline on day seven, and was undetectable at the end of trial. EROD activity in both organs followed the pattern of Phe level in all treated groups. Catalase and SOD activity at low Phe concentrations was significantly higher than controls, while LPO and PC level showed no differences from controls. In contrast, at 20 and 40 mg kg-1, CAT and SOD activity, an indicator of oxidative stress, was significantly lower than in untreated controls, while AsA, GSH, LPO, and PC levels were higher on days 4 and 7. No parameter of any treatment group in either organ tissue showed difference from control values at the end of the experiment. The SOD and CAT activity in both organs exhibited a biphasic (initial stimulatory effect) effect, whereas other parameters showed a monophasic effect in terms of dose-response. Results suggest that Phe induced CYP1A and antioxidant responses in immune organs.
- MeSH
- antioxidancia metabolismus MeSH
- chemické látky znečišťující vodu toxicita MeSH
- cytochrom P-450 CYP1A1 metabolismus MeSH
- fenantreny metabolismus toxicita MeSH
- glutathion metabolismus MeSH
- glutathiontransferasa metabolismus MeSH
- karbonylace proteinů MeSH
- katalasa metabolismus MeSH
- ledviny metabolismus MeSH
- mořan zlatý imunologie metabolismus fyziologie MeSH
- oxidace-redukce MeSH
- oxidační stres fyziologie MeSH
- peroxidace lipidů účinky léků MeSH
- superoxiddismutasa metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In this study, we conducted an extensive investigation of the biodegradation capabilities and stress response of the newly isolated strain Pseudomonas veronii SM-20 in order, to assess its potential for bioremediation of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). Initially, phenotype microarray technology demonstrated the strain's proficiency in utilizing various carbon sources and its resistance to certain stressors. Genomic analysis has identified numerous genes involved in aromatic hydrocarbon metabolism. Biodegradation assay analyzed the depletion of phenanthrene (PHE) when it was added as a sole carbon and energy source. We found that P. veronii strain SM-20 degraded approximately 25% of PHE over a 30-day period, starting with an initial concentration of 600 μg/mL, while being utilized for growth. The degradation process involved PHE oxidation to an unstable arene oxide and 9,10-phenanthrenequinone, followed by ring-cleavage. Comparative proteomics provided a comprehensive understanding of how the entire proteome responded to PHE exposure, revealing the strain's adaptation in terms of aromatic metabolism, surface properties, and defense mechanism. In conclusion, our findings shed light on the promising attributes of P. veronii SM-20 and offer valuable insights for the use of P. veronii species in environmental restoration efforts targeting PAH-impacted sites.
- Publikační typ
- časopisecké články MeSH