"22-18424M"
Dotaz
Zobrazit nápovědu
Lyme disease, a tick-borne illness caused by Borrelia spirochetes, poses a significant threat to public health. While acaricides effectively control ticks on pets and livestock, their impact on pathogen transmission is often unclear. This study investigated the acaricidal efficacy of fipronil against Ixodes ricinus ticks and its potential to block Borrelia afzelii transmission. Initially, we employed the ex vivo membrane blood-feeding system to assess the dose–response acaricidal activity of ivermectin, fipronil and its metabolite fipronil sulfone, when supplemented in the blood meal throughout tick feeding. To obtain the temporal resolution of their acaricidal activity, ticks were allowed to initiate blood feeding on an artificial membrane before being exposed to a 1-time topical application of these acaricides. Fipronil demonstrated superior speed of acaricidal activity, with onset of tick moribundity within a few hours, prompting its selection for further in vivo testing with Borrelia-infected ticks. The I. ricinus nymphs infected with B. afzelii were topically treated with fipronil shortly after attachment to mice. Four weeks post-feeding, the skin and internal organs were examined for the presence of Borrelia. No spirochetes were detected in any organ of mice exposed to fipronil-treated ticks, while 9 out of 10 control mice, exposed to non-treated infectious ticks, displayed Borrelia infection. The in vitro co-culture experiments confirmed that fipronil had no direct effect on Borrelia viability, indicating a tick-directed effect. Overall, these results underline the potential of fipronil as a valuable tool for tick control strategies and suggest a concept for acaricide-mediated Borrelia-transmission blockers.
- MeSH
- akaricidy * farmakologie MeSH
- Borrelia burgdorferi komplex účinky léků fyziologie MeSH
- klíště * mikrobiologie účinky léků MeSH
- lymeská nemoc * prevence a kontrola přenos mikrobiologie MeSH
- myši MeSH
- nymfa mikrobiologie účinky léků MeSH
- pyrazoly * farmakologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The Propagation of Plasmodium spp. and Babesia/Theileria spp. vertebrate blood stages relies on the mediated acquisition of nutrients available within the host's red blood cell (RBC). The cellular processes of uptake, trafficking and metabolic processing of host RBC proteins are thus crucial for the intraerythrocytic development of these parasites. In contrast to malarial Plasmodia, the molecular mechanisms of uptake and processing of the major RBC cytoplasmic protein hemoglobin remain widely unexplored in intraerythrocytic Babesia/Theileria species. In the paper, we thus provide an updated comparison of the intraerythrocytic stage feeding mechanisms of these two distantly related groups of parasitic Apicomplexa. As the associated metabolic pathways including proteolytic degradation and networks facilitating heme homeostasis represent attractive targets for diverse antimalarials, and alterations in these pathways underpin several mechanisms of malaria drug resistance, our ambition is to highlight some fundamental differences resulting in different implications for parasite management with the potential for novel interventions against Babesia/Theileria infections.
- Publikační typ
- časopisecké články MeSH