"SVV 260679" Dotaz Zobrazit nápovědu
BACKGROUND: A proportion of head and neck carcinomas (HNSCCs) are induced by high-risk human papillomaviruses (HPVs) and are associated with better patient outcomes compared to patients with HNSCCs related to tobacco and alcohol abuse. In the microenvironment of solid tumors, including HNSCCs, oxygen levels are often reduced, and a hypoxic state is induced. This can lead to a poor treatment response and a worse patient prognosis. One of the hypoxia-responsive genes is aspartate-β-hydroxylase (ASPH), whose activity promotes the growth, invasiveness, and metastasis of many types of solid tumors. METHODS: In our study, HNSCC samples were analyzed for the expression of ASPH and selected endogenous hypoxia markers by real-time PCR and/or multiplex fluorescence immunohistochemistry. RESULTS: Except for the EPAS1 gene, which had higher mRNA expression in the HPV-negative group of HNSCC (p < 0.05), we found no other differences in the expression of the tested genes that were related to HPV status. On the contrary, a statistically significantly higher number of cells producing ASPH (p < 0.0001), HIF1A (p < 0.0001), GLUT1 (p < 0.0001), and MMP13 (p < 0.05) proteins were detected in the HPV-positive tumor group than in the HPV-negative sample group. All the evaluated markers, except for MMP9/13, were more abundant in the tumor parenchyma than in the tumor stroma. The Cox proportional hazard models showed that increased numbers of cells with GLUT1 and HIF1A protein expression were positive prognostic markers for overall and disease-specific survival in patients independent of HPV tumor status. CONCLUSION: The study examined HNSCC samples and found that elevated ASPH and hypoxia marker proteins, typically associated with poor prognosis, may actually indicate active HPV infection, the strongest prognostic factor in HNSCC patients. In cases where HPV status is uncertain, increased expression of HIF1A and GLUT1 can serve as positive prognostic factors.
- Publikační typ
- časopisecké články MeSH
Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.
- MeSH
- Bacillus subtilis genetika metabolismus MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- bakteriální RNA * metabolismus genetika MeSH
- Corynebacterium glutamicum genetika metabolismus MeSH
- DNA řízené RNA-polymerasy * metabolismus genetika MeSH
- genetická transkripce MeSH
- konformace nukleové kyseliny MeSH
- Mycobacterium smegmatis genetika metabolismus enzymologie MeSH
- Mycobacterium tuberculosis genetika metabolismus MeSH
- nekódující RNA MeSH
- regulace genové exprese u bakterií MeSH
- sigma faktor * metabolismus genetika MeSH
- Streptomyces coelicolor genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The ectoparasitic mite Varroa destructor transmits and triggers viral infections that have deleterious effects on honey bee colonies worldwide. We performed a manipulative experiment in which worker bees collected at emergence were exposed to Varroa for 72 h, and their proteomes were compared with those of untreated control bees. Label-free quantitative proteomics identified 77 differentially expressed A. mellifera proteins (DEPs). In addition, viral proteins were identified by orthogonal analysis, and most importantly, Deformed wing virus (DWV) was found at high levels/intensity in Varroa-exposed bees. Pathway enrichment analysis suggested that the main pathways affected included peroxisomal metabolism, cyto-/exoskeleton reorganization, and cuticular proteins. Detailed examination of individual DEPs revealed that additional changes in DEPs were associated with peroxisomal function. In addition, the proteome data support the importance of TGF-β signaling in Varroa-DWV interaction and the involvement of the mTORC1 and Hippo pathways. These results suggest that the effect of DWV on bees associated with Varroa feeding results in aberrant autophagy. In particular, autophagy is selectively modulated by peroxisomes, to which the observed proteome changes strongly corresponded. This study complements previous research with different study designs and suggests the importance of the peroxisome, which plays a key role in viral infections.
- MeSH
- hmyzí proteiny metabolismus MeSH
- interakce hostitele a parazita MeSH
- peroxizomy * metabolismus virologie MeSH
- proteom metabolismus analýza MeSH
- proteomika metody MeSH
- RNA-viry * fyziologie MeSH
- signální transdukce MeSH
- Varroidae * virologie MeSH
- včely virologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH