Atropisomer
Dotaz
Zobrazit nápovědu
PCB 136 is an environmentally relevant chiral PCB congener, which has been found in vivo to be present in form of rotational isomers (atropisomers). Its atropselective biotransformation or neurotoxic effects linked with sensitization of ryanodine receptor suggest that it might interact also with other intracellular receptors in a stereospecific manner. However, possible atropselective effects of PCB 136 on nuclear receptor transactivation remain unknown. Therefore, in this study, atropselective effects of PCB 136 on nuclear receptors controlling endocrine signaling and/or expression of xenobiotic and steroid hormone catabolism were investigated. PCB136 atropisomers were found to exert differential effects on estrogen receptor (ER) activation; (+)-PCB 136 was estrogenic, while (-)-PCB 136 was antiestrogenic. In contrast, inhibition of androgen receptor (AR) activity was not stereospecific. Both PCB136 stereoisomers induced the constitutive androgen receptor (CAR)-dependent gene expression; however, no significant stereospecificity of PCB 136 atropisomers was observed. PCB136 was a partial inducer of the pregnane X receptor (PXR)-dependent gene expression. Here, (-)-PCB 136 was a significantly more potent inducer of PXR activity than (+)-PCB 136. Taken together, the present results indicate that at least two nuclear receptors participating in endocrine regulation or metabolism, ER and PXR, could be regulated in an atropselective manner by chiral PCB 136. The enantioselective enrichment of PCB atropisomers in animal and human tissues may thus have significant consequences for endocrine-disrupting effects of chiral ortho-substituted PCB congeners.
Cyclofructans and preferentially their derivatives can serve as chiral selectors for the separation of different enantiomers/atropisomers. Moreover, the strong ionophoric nature of the 18-crown-6 ether core of cyclofructan 6 for barium cations may be exploited to enhance or modify enantioselectivity. In this work isopropyl-cyclofructan-6 was used as a chiral selector for the separation of binaphthyl atropisomers in HPLC and CE. The data from both separation systems were compared with each other. While in HPLC the chiral selector was bonded to silica gel to afford a chiral stationary phase, in capillary electrophoresis it was freely mobile in the background electrolytes (BGE). This significant difference is reflected in the separation potential of the two separation systems. All five analytes could be baseline separated in HPLC (reversed phase mode) while only one derivative was baseline resolved in CE. This result was attributed to the more rigid nature of the immobilized chiral selector. Addition of Ba(2+) to the mobile phase or BGE improved chiral separations in both systems. The results may help to elucidate the interaction mechanism in these systems with cyclofructan derivatives and to gain some general knowledge of their separation potential.
... Biphenyls and Other Atropisomers of the sp -sp Single-Bond Type 1143 c. ...
1267 s.