Cabral-de-Mello, Diogo C* Dotaz Zobrazit nápovědu
Repetitive DNAs comprise large portion of eukaryote genomes. In genome projects, the assembly of repetitive DNAs is challenging due to the similarity between repeats, which generate ambiguities for alignment. Fluorescence in situ hybridization (FISH) is a powerful technique for the physical mapping of various sequences on chromosomes. This technique is thus very helpful in chromosome-based genome assemblies, providing information on the fine architecture of genomes and their evolution. However, various protocols are currently used for FISH mapping, most of which are relatively laborious and expensive, or work properly only with a specific type of probes or sequences, and there is a need for a universal and affordable FISH protocol. Here we tested a FISH protocol for mapping of different DNA repeats, such as multigene families (rDNAs, U snDNAs, histone genes), satellite DNAs, microsatellites, transposable elements, DOP-PCR products, and telomeric motif (TTAGG)n, on the chromosomes of various insects and other arthropods. Different cell types and stages obtained from diverse tissues were used. The FISH procedure proved high quality and reliable results in all experiments performed. We obtained data on the chromosomal distribution of DNA repeats in representatives of insects and other arthropods. Thus, our results allow us to conclude that the protocol is universal and requires only time adjustment for chromosome/DNA denaturation. The use of this FISH protocol will facilitate studies focused on understanding the evolution and role of repetitive DNA in arthropod genomes.
- MeSH
- členovci genetika MeSH
- DNA genetika MeSH
- fluorescence MeSH
- hmyz genetika MeSH
- hybridizace in situ fluorescenční metody MeSH
- mapování chromozomů metody MeSH
- molekulární evoluce MeSH
- multigenová rodina genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- telomery genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Satellite DNAs (satDNAs) are abundant components of eukaryotic genomes, playing pivotal roles in chromosomal organization, genome stability, and evolution. Here, we combined cytogenetic and genomic methods to characterize the satDNAs in the genomes of Leptidea butterflies. Leptidea is characterized by the presence of a high heterochromatin content, large genomes, and extensive chromosomal reshuffling as well as the occurrence of cryptic species. We show that, in contrast to other Lepidoptera, satDNAs constitute a considerable proportion of Leptidea genomes, ranging between 4.11% and 11.05%. This amplification of satDNAs, together with the hyperactivity of transposable elements, contributes to the substantial genome expansion in Leptidea. Using chromosomal mapping, we show that, particularly LepSat01-100 and LepSat03-167 satDNAs, are preferentially localized in heterochromatin exhibiting variable distribution that may have contributed to the highly diverse karyotypes within the genus. The satDNAs also exhibit W-chromosome accumulation, suggesting their involvement in sex chromosome evolution. Our results provide insights into the dynamics of satDNAs in Lepidoptera genomes and highlight their role in genome expansion and chromosomal organization, which could influence the speciation process. The high proportion of repetitive DNAs in the genomes of Leptidea underscores the complex evolutionary dynamics revealing the interplay between repetitive DNAs and genomic architecture in the genus.
Tandem repeats are important parts of eukaryotic genomes being crucial e.g., for centromere and telomere function and chromatin modulation. In Lepidoptera, knowledge of tandem repeats is very limited despite the growing number of sequenced genomes. Here we introduce seven new satellite DNAs (satDNAs), which more than doubles the number of currently known lepidopteran satDNAs. The satDNAs were identified in genomes of three species of Crambidae moths, namely Ostrinia nubilalis, Cydalima perspectalis, and Diatraea postlineella, using graph-based computational pipeline RepeatExplorer. These repeats varied in their abundance and showed high variability within and between species, although some degree of conservation was noted. The satDNAs showed a scattered distribution, often on both autosomes and sex chromosomes, with the exception of both satellites in D. postlineella, in which the satDNAs were located at a single autosomal locus. Three satDNAs were abundant on the W chromosomes of O. nubilalis and C. perspectalis, thus contributing to their differentiation from the Z chromosomes. To provide background for the in situ localization of the satDNAs, we performed a detailed cytogenetic analysis of the karyotypes of all three species. This comparative analysis revealed differences in chromosome number, number and location of rDNA clusters, and molecular differentiation of sex chromosomes.
- Publikační typ
- časopisecké články MeSH
Moths of the family Crambidae include a number of pests that cause economic losses to agricultural crops. Despite their economic importance, little is known about their genome architecture and chromosome evolution. Here, we characterized the chromosomes and repetitive DNA of the sugarcane borer Diatraea saccharalis using a combination of low-pass genome sequencing, bioinformatics, and cytogenetic methods, focusing on the sex chromosomes. Diploid chromosome numbers differed between the sexes, i.e., 2n = 33 in females and 2n = 34 in males. This difference was caused by the occurrence of a WZ1Z2 trivalent in female meiosis, indicating a multiple sex-chromosome system WZ1Z2/Z1Z1Z2Z2. A strong interstitial telomeric signal was observed on the W chromosome, indicating a fusion of the ancestral W chromosome with an autosome. Among repetitive DNAs, transposable elements (TEs) accounted for 39.18% (males) to 41.35% (females), while satDNAs accounted for only 0.214% (males) and 0.215% (females) of the genome. FISH mapping revealed different chromosomal organization of satDNAs, such as single localized clusters, spread repeats, and non-clustered repeats. Two TEs mapped by FISH were scattered. Although we found a slight enrichment of some satDNAs in the female genome, they were not differentially enriched on the W chromosome. However, we found enriched FISH signals for TEs on the W chromosome, suggesting their involvement in W chromosome degeneration and differentiation. These data shed light on karyotype and repetitive DNA dynamics due to multiple chromosome fusions in D. saccharalis, contribute to the understanding of genome structure in Lepidoptera and are important for future genomic studies.
- MeSH
- karyotyp MeSH
- molekulární evoluce MeSH
- můry * genetika MeSH
- pohlavní chromozomy genetika MeSH
- Saccharum * genetika MeSH
- transpozibilní elementy DNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tick cell lines are an easy-to-handle system for the study of viral and bacterial infections and other aspects of tick cellular processes. Tick cell cultures are often continuously cultivated, as freezing can affect their viability. However, the long-term cultivation of tick cells can influence their genome stability. In the present study, we investigated karyotype and genome size of tick cell lines. Though 16S rDNA sequencing showed the similarity between Ixodes spp. cell lines at different passages, their karyotypes differed from 2n = 28 chromosomes for parental Ixodes spp. ticks, and both increase and decrease in chromosome numbers were observed. For example, the highly passaged Ixodes scapularis cell line ISE18 and Ixodes ricinus cell lines IRE/CTVM19 and IRE/CTVM20 had modal chromosome numbers 48, 23 and 48, respectively. Also, the Ornithodoros moubata cell line OME/CTVM22 had the modal chromosome number 33 instead of 2n = 20 chromosomes for Ornithodoros spp. ticks. All studied tick cell lines had a larger genome size in comparison to the genomes of the parental ticks. Thus, highly passaged tick cell lines can be used for research purposes, but possible differences in encoded genetic information and downstream cellular processes, between different cell populations, should be taken into account.