Electromembrane extraction
Dotaz
Zobrazit nápovědu
A miniature probe for electromembrane extraction is developed and constructed. The tubular probe with an internal volume of 1.1 μL is made of polypropylene hollow fiber with a supported liquid membrane of 85% nitrophenyloctyl ether (NPOE) with 15% bis(2-ethylhexyl)phosphonic acid (DEHP). The probe is connected on-line to the electrophoresis with short separation capillary via an air assisted flow gating interface cast from poly (dimethylsiloxane). The compact instrument is computer controlled via LabView. The probe parameters are tested for extraction of creatinine and basic amino acids from artificial solution and human urine. The sensitivity of the electrophoretic determination after 300 s extraction at 150 V compared to the sensitivity without extraction is 4.9-fold and 2.6-fold higher for creatinine and arginine, respectively. The RSDs for peak area measured from 5 repeated extractions of 50 μM solutions are 7.5%, 7.2%, 8.6% and 9.2% for Crea, Lys, Arg and His, respectively. The probe can be used for all-day measurements. The preparation of the probe is simple and requires no special tool.
Micro-electromembrane extraction (μ-EME) was presented for the selective extraction of four main β-lactam antibiotics (penicillin, phenoxypenicillin, ampicillin, and amoxicillin) from complex samples. A volatile solvent (ethyl acetate or chloroform) was sandwiched between a plug of the complex sample and another plug of an aqueous acceptor solution in a transparent polymeric tube and formed the so-called free liquid membrane (FLM). The use of the FLM eliminated the evaporation of the solvent and enabled the μ-EME of the antibiotics, which was carried out by the application of DC voltage to the terminal aqueous solutions. The drugs in the complex sample were selectively transferred through the FLM to the acceptor solution, which was directly used for their determination by micellar electrokinetic chromatography with ultraviolet detection (MEKC-UV). The μ-EME was characterized by sub-μA electric currents, high elimination of matrix components, high stability of operational solutions, and suitability for extracting undiluted complex samples. The μ-EME/MEKC-UV method yielded good analytical repeatability (RSDs of peak areas ≤5%), extraction recoveries (40-84%), accuracy (92-105%) and linearity over one and a half order of magnitude (R2 ≥ 0.9998), and was applied to the determination of the four β-lactam antibiotics in human serum and waste water at clinically and environmentally relevant concentration levels. Further improvement in the method sensitivity was achieved by changing the μ-EME tube geometry (conical shape) and increasing the complex sample volume (100 μL). The analytes were enriched by factors of 7.6-11.5, the limits of detection dropped down to less than 18 ng/mL, and the modified μ-EME/MEKC-UV method enabled the trace determination of β-lactam antibiotics in complex samples.
- MeSH
- antibakteriální látky MeSH
- beta-laktamy MeSH
- elektřina * MeSH
- lidé MeSH
- membrány umělé * MeSH
- rozpouštědla MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Breast milk analysis provides useful information about acute newborn exposure to harmful substances, such as psychoactive drugs abused by a nursing mother. Since breast milk represents a complex matrix with large amounts of interfering compounds, a comprehensive sample pre-treatment is necessary. This work focuses on determination of amphetamines and synthetic cathinones in human breast milk by microextraction techniques (liquid-phase microextraction and electromembrane extraction), and their comparison to more conventional treatment methods (protein precipitation, liquid-liquid extraction, and salting-out assisted liquid-liquid extraction). The aim of this work was to optimize and validate all the extraction procedures and thoroughly assess their advantages and disadvantages with special regard to their routine clinical use. The applicability of the extractions was further verified by the analysis of six real samples collected from breastfeeding mothers suspected of amphetamine abuse. The membrane microextraction techniques turned out to be the most advantageous as they required low amounts of organic solvents but still provided efficient sample clean-up, excellent quantification limit (0.5 ng mL-1), and good recovery (81-91% and 40-89% for electromembrane extraction and liquid-phase microextraction, respectively). The traditional liquid-liquid extraction as well as the salting-out assisted liquid-liquid extraction showed comparable recoveries (41-85% and 63-88%, respectively), but higher quantification limits (2.5 ng mL-1 and 5 ng mL-1, respectively). Moreover, these methods required multiple operating steps and were time consuming. Protein precipitation was fast and simple, but it demonstrated poor sample clean-up, low recovery (56-58%) and high quantification limit (5 ng mL-1). Based on the overall results, microextraction methods can be considered promising candidates, even for routine laboratory use.
A fully automatic millifluidic sensing platform coupling in-line nonsupported microelectromembrane extraction (μ-EME) with electrochemical detection (ECD) is herein proposed for the first time. Exploiting the features of the second generation of flow analysis, termed sequential injection (SI), the smart integration of SI and μ-EME-ECD enables (i) the repeatable formation of microvolumes of phases for the extraction step in a membrane-less (nonsupported) arrangement, (ii) diverting the acceptor plug to the ECD sensing device, (iii) in-line pH adjustment before the detection step, and (iv) washing of the platform for efficient removal of remnants of wetting film solvent, all entirely unsupervised. The real-life applicability of the miniaturized sensing system is studied for in-line sample cleanup and ECD of diclofenac as a model analyte after μ-EME of urine as a complex biological sample. A comprehensive study of the merits and the limitations of μ-EME solvents on ECD is presented. Under the optimal experimental conditions using 14 μL of unprocessed urine as the donor, 14 μL of 1-nonanol as the organic phase, and 14 μL of 25 mM NaOH as the acceptor in a 2.4 mm ID PTFE tubing, an extraction voltage of 250 V, and an extraction time of 10 min, an absolute (mass) extraction recovery of 48% of diclofenac in urine is obtained. The proposed flow-through system is proven to efficiently remove the interfering effect of predominantly occurring organic species in human urine on ECD with RSD% less than 8.6%.
- MeSH
- diklofenak * MeSH
- lidé MeSH
- membrány umělé * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Electromembrane extraction (EME) of the polar zwitterionic drugs, anthracyclines (ANT, doxorubicin, daunorubicin and its metabolite daunorubicinol), from rabbit plasma was investigated. The optimized EME was compared to conventional sample pretreatment techniques such as protein precipitation (PP) and liquid-liquid extraction (LLE), mainly in terms of extraction reliability, recovery and matrix effect. In addition, phospholipids profile in the individual extracts was evaluated. The extracted samples were analyzed using UHPLC-MS/MS with electrospray ionization in positive ion mode. The method was validated within the concentration range of 0.25-1000 ng/mL for all tested ANT. Compared with PP and LLE, the EME provided high extraction recovery (more than 80% for all ANT) and excellent sample clean-up (matrix effect were 100 ± 10% with RSD values lower than 4% for all ANT). Furthermore, only negligible amounts of phospholipids were detected in the EME samples. Finally, practical applicability of EME was proved by analysis of plasma samples taken from a pilot in vivo study in rabbits. Consistent results were obtained when using both EME and LLE to extract the plasma prior to the analysis, which further confirmed high reliability of EME. This study clearly showed that EME is a simple, rapid, repeatable technique for extraction of ANT from plasma and it is an up to date alternative to routine conventional extraction techniques.
- MeSH
- antracykliny MeSH
- králíci MeSH
- léčivé přípravky * MeSH
- membrány umělé MeSH
- reprodukovatelnost výsledků MeSH
- tandemová hmotnostní spektrometrie * MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Volatile solvents are excellent extraction media for liquid-liquid extractions. However, their use in supported liquid membranes (SLMs) is limited by their evaporation from SLM and thus poor SLM stability and they have never been considered truly useful for electromembrane extraction (EME). In this contribution, volatile solvents were systematically investigated as liquid membranes for EME and their extraction characteristics were comprehensively examined for the first time. A short plug of a water immiscible volatile solvent (a free liquid membrane (FLM)) was sandwiched between two aqueous plugs (donor and acceptor solutions) in a narrow-bore polymeric tubing. Evaporation of the volatile FLM was thus completely avoided and excellent stability of the phase interface was ensured. Suitability of volatile FLMs for EMEs was justified by μ-EMEs of nortriptyline, haloperidol, loperamide and papaverine as model non-polar basic drugs. Extraction performance of μ-EME through ethyl acetate was comparable or better to that through standard non-volatile EME solvents and a high extraction selectivity was achieved for nortriptyline and haloperidol extracted through chloroform. μ-EMEs through the volatile FLMs were characterized by high extraction recoveries (62%-99% for standards and 40-89% for body fluids), low electric currents (10-1380 nA), no susceptibility to matrix ions and suitability for pretreatment of raw body fluids (human urine and serum). Resulting extracts were analysed by capillary electrophoresis with ultraviolet detection (CE/UV). Repeatability of the μ-EME-CE/UV method was excellent with intra-day and inter-day RSD values 0.8-3.2% and 1.8-4.6%, respectively. Further experiments demonstrated additional advantages of volatile FLMs by nearly exhaustive μ-EMEs of atenolol as the polar basic drug with no need for FLM modification by ionic carriers. The presented comprehensive examination of volatile solvents has broadened the range of liquid membranes suitable for EME and it is believed that this proof-of-concept study will stimulate further interest in a deeper investigation of volatile phase interfaces in EME.
- MeSH
- elektřina MeSH
- elektroforéza kapilární MeSH
- léčivé přípravky * MeSH
- lidé MeSH
- membrány umělé * MeSH
- rozpouštědla MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The reliable analysis of various compounds from tissue requires a tedious sample preparation. The sample pretreatment usually involves proper homogenization that facilitates extraction of target analytes, followed by an appropriate sample clean-up preventing matrix effects. Electromembrane extraction (EME) seems to have a significant potential to streamline the whole procedure. In this study, the applicability of EME for direct isolation of analytes from animal tissues was investigated for the first time. Extraction conditions were systematically optimized to isolate model analytes (daunorubicin and its metabolite daunorubicinol) from various tissues (myocardium, skeletal muscle and liver) coming from a pharmacokinetic study in rabbits. The relative recoveries of daunorubicin and its metabolite in all tissues, determined by the UHPLC-MS/MS method, were higher than 66 and 75%, respectively. Considerably low matrix effects (0 ± 8% with CV lower than 6%) and negligible content of phospholipids detected in EME extracts demonstrate the exceptional effectiveness of this microextraction approach in purification of tissue samples. The difference in the concentrations of the analytes determined after EME and reference liquid-liquid extraction of real tissue samples was lower than 12%, which further emphasized the trustworthiness of EME. Moreover, the considerable time reduction needed for sample treatment in case of EME must be emphasized. This study proved that EME is a simple, effective and reliable microextraction technique capable of direct extraction of the analytes from pulverized tissues without the need for an additional homogenization or purification step.
- MeSH
- fosfolipidy MeSH
- králíci MeSH
- léčivé přípravky * MeSH
- membrány umělé MeSH
- tandemová hmotnostní spektrometrie * MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A two-phase micro-electromembrane extraction (μ-EME) using a floating drop of an organic solvent was presented for rapid and efficient pretreatment of complex biological samples. The μ-EME system consisted of a glass vial containing aqueous sample (donor solution) and a small drop of a water-immiscible organic solvent (4-nitrocumene), which was floating on the surface of the aqueous solution in form of a free liquid membrane (FLM). The vial geometry and the optimized volume ratios of the donor and the FLM ensured a stable position of the FLM in the center of the vial during μ-EME, and one electrode of a d.c. power supply was inserted directly into the FLM while the other electrode was placed into the aqueous sample. The active surface area of the floating drop FLM contacting the sample was considerably larger in comparison to formerly reported μ-EME formats employing FLMs and resulted in a faster and a more efficient transfer of target analytes from the sample to the FLM. Four basic drugs (nortriptyline, papaverine, loperamide, and haloperidol) were selected as model analytes and were extracted from physiological solution, human urine, and dried blood spot samples. At the optimized μ-EME conditions (250 V, 15 min, 300 rpm, acidic donor) and the optimized ratio of the sample to the FLM volume (500:14 μL), extraction recoveries between 49 and 100% and enrichment factors up to 35.7 were achieved. Quantitative analyses of the basic drugs in the resulting FLMs (diluted with methanol) were performed by capillary electrophoresis with ultraviolet detection and demonstrated excellent repeatability (RSD ≤ 4.9%) and linearity (r2 ≥ 0.9997), and low limits of detection (5-28 ng/mL) of the method.
- Publikační typ
- časopisecké články MeSH
Similarly to many other sample extraction techniques, efficient extraction of very polar compounds with electromembrane extraction (EME) is difficult. To date, the best known strategy to improve the mass transfer of these compounds is the addition of an ionic carrier, often bis(2-ethylhexyl) phosphate (DEHP) to the supported liquid membrane (SLM). DEHP is known to work by providing ionic interactions with basic compounds, to improve the partitioning into the SLM. In this work, the behavior of DEHP during extractions was studied for the first time. Interestingly, substantial amounts of DEHP was found to leak from the SLM into the aqueous sample at pH > 4. Due to this leakage, the ion-pair formation between analytes and DEHP was moved from the sample/SLM interface (interfacial complexation) to the bulk of the sample solution (bulk-sample complexation), which improved the mass transfer of polar bases considerably. Based on this, an extraction procedure for eight polar bases with log P values from +0.7 to -5.9 was developed and optimized. The optimization demonstrated that extraction of more polar analytes was favored by bulk-sample complexation. With optimized conditions, extraction from biological samples such as urine, protein-precipitated plasma, and raw plasma were performed with recoveries >40%, except for a few analytes. In addition, the extraction system could be operated under robust conditions with relatively low current (<70 μA for plasma), and provided low variability (<16% RSD), as well as good clean-up efficiency. These findings are an important step in further scientific anchoring of EME, and development of the technique towards selective extraction of very polar substances from complex biological matrices.
- MeSH
- elektrochemické techniky * MeSH
- organofosfáty chemie izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
Simultaneous electromembrane extraction (EME) of six trace metal cations (Cu2+ , Zn2+ , Co2+ , Ni2+ , Pb2+ , Cd2+ ) from saline samples was investigated. CE with capacitively coupled contactless conductivity detection (C4 D) was used to determine the metals in acceptor solutions due to its excellent compatibility with the minute volumes of acceptor solutions. Bis(2-ethylhexyl)phosphate (DEHPA) was selected as a suitable nonselective modifier for EME transport of target metal cations. Both, the individual effect of each major inorganic cation (Na+ , K+ , Ca2+ , Mg2+ ) and their synergistic effect on EME of the trace metal cations were evaluated. In both cases, a decrease in extraction efficiency was observed when major inorganic cations were present in the sample. This effect was more significant for Ca2+ and Mg2+ . The system was optimized for simultaneous extractions of the six target metals from saline samples (50 mM Na+ , 5 mM Mg2+ , 1 mM K+ , and 1 mM Ca2+ ) and following EME conditions were applied. Organic phase consisted of 1-nonanol containing 1% (v/v) DEHPA, acceptor solution was 1 M acetic acid (HAc) and sample pH was adjusted to 5. Sample was stirred at 750 rpm and EMEs were carried out at extraction potential of 10 V for 20 min. The method presented a repeatability between 8 and 21.8% (n = 5), good linearity in 0.5-10 μM concentration range (R2 = 0.987-0.999) and LOD better than 2.6 nM. Applicability of the EME-CE-C4 D method to the analyses of metal cations in drinking water, seawater, and urine samples was also demonstrated.