Allodiploid hybrid species, Aspergillus latus, belonging to section Nidulantes, is a hybrid of A. spinulosporus and an unknown species closely related to A. quadrilineatus and A. sublatus. This hybrid has often been misidentified as the species in section Nidulantes, such as A. nidulans, A. spinulosporus, A. sublatus, or other cryptic species. Aspergillus latus has not been reported in Japan as well as Asia so far. In this study, we screened 23 clinical strains identified as A. spinulosporus isolated in Japan from 2012 to 2023 and found seven A. latus strains. To characterize the A. latus strains, we conducted comprehensive phenotyping including morphological observation, whole genome sequences, and phylogenetic analysis based on calmodulin (CaM) gene. In addition, we conducted antifungal susceptibility testing for A. latus strains. As a result, the morphological characters of A. latus were more similar to those of A. spinulosporus compared to A. sublatus. However, the ascospore of A. latus differed from that of A. spinulosporus. Phylogenetic analysis revealed that different CaM alleles from the same isolate clustered separately with A. spinulosporus and A. sublatus, consistent with its hybrid origin. Furthermore, A. latus strains showed reduced susceptibility to caspofungin and amphotericin B compared to A. spinulosporus, while they were susceptible to azoles. Our results suggest that A. latus has been a causative pathogen of aspergillosis in Japan since 2013.
- MeSH
- Antifungal Agents pharmacology MeSH
- Aspergillus * genetics classification isolation & purification drug effects MeSH
- Aspergillosis * microbiology epidemiology MeSH
- Phylogeny MeSH
- Calmodulin genetics MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Whole Genome Sequencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Japan MeSH
Ecto-5'-nucleotidase (CD73) is a novel target in cancer (immuno)therapy. Its blockade prevents the formation of immunosuppressive and cancer-promoting adenosine from AMP. Here, we report on the development of a series of small molecules that mimic adenine nucleotides, in which the ribose moiety was replaced by an alkyl chain. Its length was found to be crucial for potency. A crystal structure of the N6-disubstituted acyclic ADP analog 26 (N6-benzyl,N6-methyladenine-9-yl)pentyloxydiphosphonate) in complex with human CD73 revealed that the flexible pentyl linker adopts to interdomain rotation angles differing by up to 18.5°. The most potent CD73 inhibitor of the present series was analog 27 (N6-benzyl,N6-methyladenine-9-yl)hexyloxydiphosphonate, PSB-24000) which exhibited submicromolar potency at human CD73 (Ki 563 nM at soluble CD73; Ki 481 nM at membrane-bound CD73 of triple-negative breast cancer cells). Acyclic nucleotide analogs may be advantageous compared to the previously reported nucleotidic CD73 inhibitors due to their high chemical stability, and because less off-target effects are to be expected. The structure-activity relationships discovered in this study provide valuable insights which will be useful for the development of CD73 inhibitors as immunotherapeutic drugs.
- MeSH
- 5'-Nucleotidase * antagonists & inhibitors metabolism MeSH
- Cisplatin chemistry pharmacology MeSH
- GPI-Linked Proteins antagonists & inhibitors metabolism MeSH
- Enzyme Inhibitors * pharmacology chemistry chemical synthesis MeSH
- Humans MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Purine Nucleotides * chemistry pharmacology chemical synthesis MeSH
- Pyrimidine Nucleotides * chemistry pharmacology chemical synthesis MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Therefore, understanding the molecular regulatory mechanisms underlying the pathogenesis of DKD is imperative. In this study, we aimed to explore the molecular mechanisms of tubule region endothelial dysfunction in early DKD. Early-stage DKD model was established in 16-week-old female db/db mice for 16 weeks. Body weight, glucose level, and urine albumin-to-creatinine ratio (UACR) were measured. Hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining were performed to evaluate pathological lesions. RNA sequencing data of the kidneys and integrated publicly available single-cell and spatial transcriptome datasets were used to investigate the mechanism of endothelial dysfunction. There was a significant increase in body weight (p = 0.001), glucose levels (p=0.0008), and UACR (p=0.006) in db/db mice compared with db/m mice. H&E and PAS staining showed that vacuolar lesions and protein casts of tubules were the major histopathological changes observed in early-stage DKD mice. The apoptotic pathway in endothelial cells was notably activated in DKD, and Thbs1 was identified as the central gene involved in this apoptotic process. Deconvolution of the cell composition in the RNA sequencing data showed a decrease in the proportion of endothelial cells in the DKD mice. Further analysis of the activity and regulatory network of transcription factors showed that Creb1 was activated in both mouse and human early-stage DKD, suggesting that Creb1 activation may be involved in early kidney injury. The endothelial cell apoptotic pathway is activated in DKD, and the proportion of endothelial cells was reduced in the DKD mice, which is significantly associated with Thbs1. Keywords: Diabetic kidney disease, Endothelial dysfunction, RNA sequencing,Thbs1, Creb1.
- MeSH
- Apoptosis MeSH
- Diabetic Nephropathies * pathology metabolism physiopathology genetics MeSH
- Endothelial Cells metabolism pathology MeSH
- Kidney Tubules pathology metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Disease Progression * MeSH
- Cyclic AMP Response Element-Binding Protein metabolism genetics MeSH
- Thrombospondin 1 metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND AND PURPOSE: Radiation-induced intestinal injury (RIII) compromises the clinical utility of pelvic radiotherapy (RT). We aimed to explore the protective effect and underlying mechanism of (-)-epigallocatechin-3-gallate (EGCG) on RIII. MATERIALS AND METHODS: We evaluated the protective effect of EGCG on intestine in RIII mouse model and pelvic cancer patients, while explored the underlying mechanism through (1) 16S rRNA sequencing, (2) metabolomic profiles, (3) fresh sterile fecal filtrate (SFF) transplantation, and (4) transcriptome sequencing. RESULTS: EGCG efficiently prevented RIII in mouse, as reflected by improved survival, alleviated intestinal structure damage, promoted intestinal regeneration, and ameliorated gut microbiota dysbiosis. Prophylactic EGCG intervention reduced the severity of RIII in patients receiving pelvic RT. Mechanistically, the protective effect of EGCG could be transferred to other mice by SFF transplantation. EGCG enriched gut microbiota-derived metabolite D-tagatose, and oral administration of D-tagatose reproduced the radio-protective effect of EGCG via activating AMPK. CONCLUSION: Oral EGCG may be a promising strategy for preventing RIII clinically, and warrant further investigation in prospective randomized phase III trials.
- MeSH
- Catechin * analogs & derivatives pharmacology MeSH
- Humans MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Pelvic Neoplasms * radiotherapy MeSH
- AMP-Activated Protein Kinases metabolism MeSH
- Radiation Injuries * prevention & control MeSH
- Radiation-Protective Agents pharmacology therapeutic use MeSH
- Intestines radiation effects drug effects microbiology MeSH
- Gastrointestinal Microbiome * drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Myricetin (MYR) and ampelopsin (AMP, or dihydromyricetin) are flavonoid aglycones found in certain plants and dietary supplements. During the presystemic biotransformation of flavonoids, mainly sulfate and glucuronide derivatives are produced, which are the dominant metabolites in the circulation. In this study, we tested the interactions of MYR, myricetin-3'-O-sulfate (M3'S), AMP, and ampelopsin-4'-O-sulfate (A4'S) with human serum albumin (HSA), cytochrome P450 enzymes (CYPs), and organic anion-transporting polypeptides (OATPs) using in vitro models, including the recently developed method for measuring flavonoid levels in living cells. M3'S and MYR bound to albumin with high affinity, and they showed moderate displacing effects versus the Site I marker warfarin. MYR, M3'S, AMP, and A4'S exerted no or only minor inhibitory effects on CYP2C9, CYP2C19, and CYP3A4 enzymes. M3'S and MYR caused considerable inhibitory actions on OATP1B1 at low micromolar concentrations (IC50 = 1.7 and 6.4 μM, respectively), while even their nanomolar levels resulted in strong inhibitory effects on OATP2B1 (IC50 = 0.3 and 0.4 μM, respectively). In addition, M3'S proved to be a substrate of OATP1B1 and OATP2B1. These results suggest that MYR-containing dietary supplements may affect the OATP-mediated transport of certain drugs, and OATPs are involved in the tissue uptake of M3'S.
- MeSH
- Cytochrome P-450 CYP3A metabolism MeSH
- Cytochrome P-450 CYP2C9 metabolism MeSH
- Flavonoids * pharmacology MeSH
- Flavonols pharmacology MeSH
- Humans MeSH
- Liver-Specific Organic Anion Transporter 1 * metabolism MeSH
- Organic Anion Transporters * metabolism MeSH
- Serum Albumin metabolism MeSH
- Sulfates metabolism MeSH
- Cytochrome P-450 Enzyme System metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- MeSH
- ATP Binding Cassette Transporter, Subfamily G, Member 2 genetics MeSH
- Blood Group Antigens * MeSH
- Cell Membrane metabolism MeSH
- Humans MeSH
- Neoplasm Proteins genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Letter MeSH
OBJECTIVE: S100A4 is a DAMP protein. S100A4 is overexpressed in patients with systemic sclerosis (SSc), and levels correlate with organ involvement and disease activity. S100A4-/- mice are protected from fibrosis. The aim of this study was to assess the antifibrotic effects of anti-S100A4 monoclonal antibody (mAb) in murine models of SSc and in precision cut skin slices of patients with SSc. METHODS: The effects of anti-S100A4 mAbs were evaluated in a bleomycin-induced skin fibrosis model and in Tsk-1 mice with a therapeutic dosing regimen. In addition, the effects of anti-S100A4 mAbs on precision cut SSc skin slices were analyzed by RNA sequencing. RESULTS: Inhibition of S100A4 was effective in the treatment of pre-established bleomycin-induced skin fibrosis and in regression of pre-established fibrosis with reduced dermal thickening, myofibroblast counts, and collagen accumulation. Transcriptional profiling demonstrated targeting of multiple profibrotic and proinflammatory processes relevant to the pathogenesis of SSc on targeted S100A4 inhibition in a bleomycin-induced skin fibrosis model. Moreover, targeted S100A4 inhibition also modulated inflammation- and fibrosis-relevant gene sets in precision cut SSc skin slices in an ex vivo trial approach. Selected downstream targets of S100A4, such as AMP-activated protein kinase, calsequestrin-1, and phosphorylated STAT3, were validated on the protein level, and STAT3 inhibition was shown to prevent the profibrotic effects of S100A4 on fibroblasts in human skin. CONCLUSION: Inhibition of S100A4 confers dual targeting of inflammatory and fibrotic pathways in complementary mouse models of fibrosis and in SSc skin. These effects support the further development of anti-S100A4 mAbs as disease-modifying targeted therapies for SSc.
- MeSH
- Bleomycin * MeSH
- Fibrosis * MeSH
- Skin * pathology drug effects metabolism MeSH
- Humans MeSH
- Disease Models, Animal * MeSH
- Antibodies, Monoclonal * pharmacology therapeutic use MeSH
- Mice MeSH
- S100 Calcium-Binding Protein A4 * genetics metabolism MeSH
- Scleroderma, Systemic * drug therapy genetics MeSH
- STAT3 Transcription Factor metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Extracellular vesicles (EVs) play a crucial role in intercellular communication by transferring bioactive molecules from donor to recipient cells. As a result, EV fusion leads to the modulation of cellular functions and has an impact on both physiological and pathological processes in the recipient cell. This study explores the impact of EV fusion on cellular responses to inflammatory signaling. Our findings reveal that fusion renders non-responsive cells susceptible to inflammatory signaling, as evidenced by increased NF-κB activation and the release of inflammatory mediators. Syntaxin-binding protein 1 is essential for the merge and activation of intracellular signaling. Subsequent analysis show that EVs transfer their functionally active receptors to target cells, making them prone to an otherwise unresponsive state. EVs in complex with their agonist, require no further stimulation of the target cells to trigger mobilization of NF-κB. While receptor antagonists were unable to inhibit NF-κB activation, blocking of the fusion between EVs and their target cells with heparin mitigated inflammation in mice challenged with EVs.
- MeSH
- Biological Transport MeSH
- Extracellular Vesicles * metabolism MeSH
- Mice MeSH
- NF-kappa B * metabolism MeSH
- Signal Transduction MeSH
- Inflammation pathology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Adefovir based acyclic nucleoside phosphonates were previously shown to modulate bacterial and, to a certain extent, human adenylate cyclases (mACs). In this work, a series of 24 novel 7-substituted 7-deazaadefovir analogues were synthesized in the form of prodrugs. Twelve analogues were single-digit micromolar inhibitors of Bordetella pertussis adenylate cyclase toxin with no cytotoxicity to J774A.1 macrophages. In HEK293 cell-based assays, compound 14 was identified as a potent (IC50 = 4.45 μM), non-toxic, and selective mAC2 inhibitor (vs. mAC1 and mAC5). Such a compound represents a valuable addition to a limited number of small-molecule probes to study the biological functions of individual endogenous mAC isoforms.
Adipose tissue signals to brain, liver, and muscles to control whole body metabolism through secreted lipid and protein factors as well as neurotransmission, but the mechanisms involved are incompletely understood. Adipocytes sequester triglyceride (TG) in fed conditions stimulated by insulin, while in fasting catecholamines trigger TG hydrolysis, releasing glycerol and fatty acids (FAs). These antagonistic hormone actions result in part from insulin's ability to inhibit cAMP levels generated through such G-protein-coupled receptors as catecholamine-activated β-adrenergic receptors. Consistent with these antagonistic signaling modes, acute actions of catecholamines cause insulin resistance. Yet, paradoxically, chronically activating adipocytes by catecholamines cause increased glucose tolerance, as does insulin. Recent results have helped to unravel this conundrum by revealing enhanced complexities of these hormones' signaling networks, including identification of unexpected common signaling nodes between these canonically antagonistic hormones.
- MeSH
- Cyclic AMP metabolism MeSH
- Insulin * metabolism MeSH
- Catecholamines metabolism MeSH
- Humans MeSH
- Lipolysis * physiology MeSH
- Adipose Tissue metabolism MeSH
- Adipocytes metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH