Mitogenome
Dotaz
Zobrazit nápovědu
The structure of the Fusarium gerlachii mitogenome is similar to that of closely related Fusarium graminearum; it has a total length of 93,428 bp, the base composition of the genome is: A (35.3%), T (32.8%), C (14.7%) and G (17.2%). The mitogenome contains 13 protein-coding genes, 2 ribosomal RNA (rRNA) and 28 transfer RNA (tRNA) genes. The tRNA genes range in size from 62 bp to 88 bp. The gene order is identical to that of the other Fusarium mitogenomes.
The structure of the Fusarium culmorum mitogenome is similar to that of closely related Fusarium spp.: it has a total length of 103,844 bp, the base composition of the genome is the following: A (35.4%), T (32.9%), C (14.6%), and G (17.1%). The mitogenome contains 13 protein-coding genes, 2 ribosomal RNA (rRNA), and 28 transfer RNA (tRNA) genes, all coded on the same strand of DNA. The gene order is identical to that of the other Fusarium and Hypocreales mitogenomes. Maximum likelihood and Bayesian analysis based on the concatenated amino acid dataset of mitochondrial protein-coding genes confirmed close genetic relationship of F. culmorum to the other type B trichothecene producers F. graminearum and F. gerlachii.
Although parasitic copepods of the genus Ergasilus von Nordmann, 1832 are globally distributed parasites of fish, their phylogenetic relationships with other Copepoda are not clear, and the characteristics of their mitochondrial genomes (mitogenomes) are not thoroughly understood. The objective of this study was to address these knowledge gaps by sequencing the complete mitogenome of Ergasilus tumidus Markevich, 1940. The complete mitogenome (GenBank Acc. No. OQ596537) was 14,431 bp long and it comprised 13 protein-coding genes (PCGs), 22 tRNAs, two tRNAs, and two control regions (CRs). Phylogenetic analyses, conducted using concatenated nucleotide and amino acid sequences of 13 protein-coding genes, produced two partially incongruent topologies. While the order Calanoida was consistently resolved as the sister lineage to the other three orders, topological instability was observed in the relationships of the orders Cyclopoida, Siphonostomatoida and Harpacticoida. Siphonostomatoida clustered with Cyclopoida in the nucleotide-based phylogeny, but with Harpacticoida in the amino acid-based phylogeny. The latter topology conforms to the widely accepted relationships, but we speculate that the former topology is more likely to be the correct one. Our study provides a complete mitogenome sequence of E. tumidus, which helps us better understand the molecular evolution of the genus Ergasilus. Additionally, we suggest a different perspective on the controversial phylogenetic relationships among Siphonostomatoida, Cyclopoida and Harpacticoida, diverging from previously accepted views.
- MeSH
- Copepoda * genetika MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- nukleotidy MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Working with mitochondrial DNA from highly degraded samples is challenging. We present a whole mitogenome Illumina-based sequencing method suitable for highly degraded samples. The method makes use of double-stranded library preparation with hybridization-based target enrichment. The aim of the study was to implement a new user-friendly method for analysing many ancient DNA samples at low cost. The method combines the Swift 2S™ Turbo library preparation kit and xGen® panel for mitogenome enrichment. Swift allows to use low input of aDNA and own adapters and primers, handles inhibitors well, and has only two purification steps. xGen is straightforward to use and is able to leverage already pooled libraries. Given the ancient DNA is more challenging to work with, the protocol was developed with several improvements, especially multiplying DNA input in case of low concentration DNA extractions followed by AMPure® beads size selection and real-time pre-capture PCR monitoring in order to avoid cycle-optimization step. Nine out of eleven analysed samples successfully retrieved mitogenomes. Hence, our method provides an effective analysis of whole mtDNA, and has proven to be fast, cost-effective, straightforward, with utilisation in population-wide research of burial sites.
- MeSH
- analýza nákladů a výnosů MeSH
- genom mitochondriální * MeSH
- lidé MeSH
- mitochondriální DNA genetika MeSH
- polymerázová řetězová reakce MeSH
- soudní genetika metody MeSH
- starobylá DNA * MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A recently presented taxonomical arrangement of the moss genus Orthotrichum Hedw. s.l. substantially changed the traditional view of the taxon that had been accepted throughout the twentieth century. This paper provides the results of mitogenomic studies that strongly support the new taxonomical concept. Comparative analyses presented in this study confirmed the stable structure of moss mitogenomes. Moreover, 17 complete mitogenome sequences were used to identify the major evolutionary groups, including 11 newly sequenced ones, for this study. The analysis of mitochondrial hotspots revealed intron 4 of the cox1 gene to be the most variable non-coding region. The most variable protein-coding genes in the tribe Orthotricheae were ccmFC and tatC. The intergenic and intronic hotspots of Orthotrichum s.l. identified in the present study do not correspond to those described in vascular plant mitogenomes.
Thousands of eukaryotes transcriptomes have been generated, mainly to investigate nuclear genes expression, and the amount of available data is constantly increasing. A neglected but promising use of this large amount of data is to assemble organelle genomes. To assess the reliability of this approach, we attempted to reconstruct complete mitochondrial genomes from RNA-Seq experiments of Reticulitermes termite species, for which transcriptomes and conspecific mitogenomes are available. We successfully assembled complete molecules, although a few gaps corresponding to tRNAs had to be filled manually. We also reconstructed, for the first time, the mitogenome of Reticulitermes banyulensis. The accuracy and completeness of mitogenomes reconstruction appeared independent from transcriptome size, read length and sequencing design (single/paired end), and using reference genomes from congeneric or intra-familial taxa did not significantly affect the assembly. Transcriptome-derived mitogenomes were found highly similar to the conspecific ones obtained from genome sequencing (nucleotide divergence ranging from 0% to 3.5%) and yielded a congruent phylogenetic tree. Reads from contaminants and nuclear transcripts, although slowing down the process, did not result in chimeric sequence reconstruction. We suggest that the described approach has the potential to increase the number of available mitogenomes by exploiting the rapidly increasing number of transcriptomes.
- MeSH
- anotace sekvence metody MeSH
- data mining metody MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- Isoptera genetika MeSH
- reprodukovatelnost výsledků MeSH
- sekvence nukleotidů genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenování transkriptomu MeSH
- transkriptom genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
Organisms living in high altitude must adapt to environmental conditions with hypoxia and low temperature, e.g. by changes in the structure and function of proteins associated with oxidative phosphorylation in mitochondria. Here we analysed the signs of adaptive evolution in 27 mitogenomes of endemic Ethiopian rats (Stenocephalemys), where individual species adapted to different elevation. Significant signals of positive selection were detected in 10 of the 13 mitochondrial protein-coding genes, with a majority of functional substitutions in the NADH dehydrogenase complex. Higher frequency of positively selected sites was found in phylogenetic lineages corresponding to Afroalpine specialists.
- MeSH
- fylogeneze MeSH
- genová introgrese MeSH
- mitochondriální proteiny chemie genetika MeSH
- mitochondrie genetika MeSH
- molekulární evoluce MeSH
- molekulární modely MeSH
- Murinae klasifikace genetika MeSH
- oxidativní fosforylace MeSH
- sekvenční analýza DNA metody MeSH
- selekce (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- haplotypy MeSH
- lidé MeSH
- mitochondriální DNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- Geografické názvy
- Česká republika MeSH
- Slovenská republika MeSH
The structure of the Aneura pinguis mitochondrial genome (GenBank accession no. NC_026901) is similar to that of closely related Metzgeriales species: it has a total length of 165 603 bp, the base composition of the mitogenome is the following: A (26.2%), C(23.6%), G(23.8%), and T(26.4%). The A. piguis mitochondrial genome contains 69 genes. A complete mitochondrial genome sequence of A. pinguis will help better to understand mitogenome structure and content among Metzgeriales order.
- MeSH
- délka genomu MeSH
- DNA rostlinná MeSH
- fylogeneze * MeSH
- genom mitochondriální * MeSH
- genom rostlinný MeSH
- genomika MeSH
- Marchantiophyta genetika MeSH
- mitochondriální DNA MeSH
- mitochondriální geny * MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Morphological characteristics of the acanthocephalan Polymorphus minutus (Goeze, 1782), which was collected from the duck Anas platyrhynchos Linnaeus in the Czech Republic, are described. The mitochondrial (mt) genome of P. minutus was sequenced, with a total length of 14,149 bp, comprising 36 genes including 12 protein coding genes (PCGs), 22 transfer RNA (tRNA) genes and two ribosomal RNA genes (rrnL and rrnS). This genome is similar to the mt genomes of other syndermatan species. All these genes were encoded on the same DNA strand and in the same orientation. The overall nucleotide composition of the P. minutus mt genome was 38.2% T, 27.3% G, 26.2% A, and 8.3% C. The amino acid sequences of 12 PCGs for mt genomes of 28 platyzoans, including P. minutus, were used for phylogenetic analysis, and the resulting topology recovers P. minutus as sister to Southwellina hispida (Van Cleave, 1925), and the two taxa form a sister clade to Centrorhynchus aluconis (Müller, 1780) and Plagiorhynchus transversus (Rudolphi, 1819), which are all species in the Palaeacanthocephala, thus supporting the monophyly of this class.
- MeSH
- Acanthocephala anatomie a histologie genetika MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- genom u helmintů * MeSH
- helmintózy zvířat parazitologie MeSH
- kachny * MeSH
- nemoci ptáků parazitologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH