Crop inoculation with Glomus cubense isolate (INCAM-4, DAOM-241198) promotes yield in banana, cassava, forages, and others. Yield improvements range from 20 to 80% depending on crops, nutrient supply, and edaphoclimatic conditions. However, it is difficult to connect yield effects with G. cubense abundance in roots due to the lack of an adequate methodology to trace this taxon in the field. It is necessary to establish an accurate evaluation framework of its contribution to root colonization separated from native arbuscular mycorrhizal fungi (AMF). A taxon-discriminating primer set was designed based on the ITS nrDNA marker and two molecular approaches were optimized and validated (endpoint PCR and quantitative real-time PCR) to trace and quantify the G. cubense isolate in root and soil samples under greenhouse and environmental conditions. The detection limit and specificity assays were performed by both approaches. Different 18 AMF taxa were used for endpoint PCR specificity assay, showing that primers specifically amplified the INCAM-4 isolate yielding a 370 bp-PCR product. In the greenhouse, Urochloa brizantha plants inoculated with three isolates (Rhizophagus irregularis, R. clarus, and G. cubense) and environmental root and soil samples were successfully traced and quantified by qPCR. The AMF root colonization reached 41-70% and the spore number 4-128 per g of soil. This study demonstrates for the first time the feasibility to trace and quantify the G. cubense isolate using a taxon-discriminating ITS marker in roots and soils. The validated approaches reveal their potential to be used for the quality control of other mycorrhizal inoculants and their relative quantification in agroecosystems.
Million of acres of U.S. wildlands are sprayed with herbicides to control invasive species, but relatively little is known about non-target effects of herbicide use. We combined greenhouse, field, and laboratory experiments involving the invasive forb spotted knapweed (Centaurea stoebe) and native bunchgrasses to assess direct and indirect effects of the forb-specific herbicide picloram on arbuscular mycorrhizal fungi (AMF), which are beneficial soil fungi that colonize most plants. Picloram had no effect on bunchgrass viability and their associated AMF in the greenhouse, but killed spotted knapweed and reduced AMF colonization of a subsequent host grown. Results were similar in the field where AMF abundance in bunchgrass-dominated plots was unaffected by herbicides one year after spraying based on 16:1ω5 phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) concentrations. In spotted-knapweed-dominated plots, however, picloram application shifted dominance from spotted knapweed, a good AMF host, to bulbous bluegrass (Poa bulbosa), a poor AMF host. This coincided with a 63% reduction in soil 16:1ω5 NLFA concentrations but no reduction of 16:1ω5 PLFA. Because 16:1ω5 NLFA quantifies AMF storage lipids and 16:1ω5 PLFA occurs in AMF membrane lipids, we speculate that the herbicide-mediated reduction in host quality reduced fungal carbon storage, but not necessarily fungal abundance after one year in the field. Overall, in greenhouse and field experiments, AMF were only affected when picloram altered host quantity and quality. This apparent lack of direct effect was supported by our in-vitro trial where picloram applied to AMF mycelia did not reduce fungal biomass and viability. We show that the herbicide picloram can have profound, indirect effects on AMF within one year. Depending on herbicide-mediated shifts in host quality, rapid interventions may be necessary post herbicide applications to prevent loss of AMF abundance. Future research should assess consequences of these potential shifts for the restoration of native plants that differ in mycorrhizal dependency.
- MeSH
- Centaurea drug effects microbiology MeSH
- Herbicides adverse effects MeSH
- Poaceae drug effects microbiology MeSH
- Mycorrhizae drug effects MeSH
- Picloram adverse effects MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Montana MeSH
Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.
Research on the role of arbuscular mycorrhizal fungi (AMF) in the synthesis of essential oils (EOs) by aromatic plants has seldom been conducted in field-relevant conditions, and then, only limited spectra of EO constituents have been analyzed. The effect was investigated of inoculation with AMF on the synthesis of a wide range of EO in two aromatic species, coriander (Coriandrum sativum) and dill (Anethum graveolens), in a garden experiment under outdoor conditions. Plants were grown in 4-l pots filled with soil, which was either γ-irradiated (eliminating native AMF) or left non-sterile (containing native AMF), and inoculated or not with an isolate of Rhizophagus irregularis. AMF inoculation significantly stimulated EO synthesis in both plant species. EO synthesis (total EO and several individual constituents) was increased in dill in all mycorrhizal treatments (containing native and/or inoculated AMF) compared to non-mycorrhizal plants. In contrast, EO concentrations in coriander (total EO and most constituents) were increased only in the treatment combining both inoculated and native AMF. A clear positive effect of AMF on EO synthesis was found for both aromatic plants, which was, however, specific for each plant species and modified by the pool of AMF present in the soil.
At present, there is no relevant information on arbuscular mycorrhiza and the effect of the symbiosis on the growth of wild populations of cyclamens. To fill this gap, two populations of Cyclamen purpurascens subsp. immaculatum, endemic in Nízke Tatry (NT) mountains and Veľká Fatra (VF) mountains, Slovakia, were studied in situ as well as in a greenhouse pot experiment. For both populations, mycorrhizal root colonization of native plants was assessed, and mycorrhizal inoculation potential (MIP) of the soils at the two sites was determined in 3 consecutive years. In the greenhouse experiment, the growth response of cyclamens to cross-inoculation with arbuscular mycorrhizal fungi (AMF) was tested: plants from both sites were grown in their native soils and inoculated with a Septoglomus constrictum isolate originating either from the same or from the other plant locality. Although the MIP of soil at the NT site was significantly higher than at the VF site, the level of AMF root colonization of C. purpurascens subsp. immaculatum plants in the field did not significantly differ between the two localities. In the greenhouse experiment, inoculation with AMF generally accelerated cyclamen growth and significantly increased all growth parameters (shoot dry weight, leaf number and area, number of flowers, tuber, and root dry weight) and P uptake. The two populations of C. purpurascens subsp. immaculatum grown in their native soils, however, differed in their response to inoculation. The mycorrhizal growth response of NT plants was one-order higher compared to VF plants, and all their measured growth parameters were stimulated regardless of the fungal isolates' origin. In the VF plants, only the non-native (NT originating) isolate showed a significant positive effect on several growth traits. It can be concluded that mycorrhiza significantly increased fitness of C. purpurascens subsp. immaculatum, despite the differences between plant populations, implying that AMF symbionts should be taken into account in conservation programs of this endemic plant.
- MeSH
- Cyclamen growth & development microbiology MeSH
- Phylogeny MeSH
- Plant Roots microbiology MeSH
- Mycorrhizae genetics growth & development isolation & purification physiology MeSH
- Soil Microbiology MeSH
- Symbiosis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Slovakia MeSH
Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date.
- MeSH
- Biodiversity * MeSH
- Biomass * MeSH
- DNA, Fungal genetics MeSH
- Genes, Fungal MeSH
- Genes, rRNA MeSH
- Plant Roots microbiology MeSH
- Mycorrhizae classification genetics MeSH
- Grassland * MeSH
- Plants classification MeSH
- Sequence Analysis, DNA MeSH
- Computational Biology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Saskatchewan MeSH
During the last decade, the application of arbuscular mycorrhizal fungi (AMF) as bioenhancers has increased significantly. However, until now, it has been difficult to verify the inoculation success in terms of fungal symbiont establishment in roots of inoculated plants because specific fungal strains could not be detected within colonized roots. Using mitochondrial large subunit ribosomal DNA, we show that Rhizophagus irregularis (formerly known as Glomus intraradices) isolate BEG140 consists of two different haplotypes. We developed nested PCR assays to specifically trace each of the two haplotypes in the roots of Phalaris arundinacea from a field experiment in a spoil bank of a former coal mine, where BEG140 was used as inoculant. We revealed that despite the relatively high diversity of native R. irregularis strains, R. irregularis BEG140 survived and proliferated successfully in the field experiment and was found significantly more often in the inoculated than control plots. This work is the first one to show tracing of an inoculated AMF isolate in the roots of target plants and to verify its survival and propagation in the field. These results will have implications for basic research on the ecology of AMF at the intraspecific level as well as for commercial users of mycorrhizal inoculation.
- MeSH
- DNA, Fungal genetics MeSH
- Phylogeny MeSH
- Genetic Markers MeSH
- Glomeromycota genetics isolation & purification physiology MeSH
- Haplotypes MeSH
- Plant Roots microbiology MeSH
- DNA, Mitochondrial genetics MeSH
- Mitochondria genetics MeSH
- Molecular Sequence Data MeSH
- Mycorrhizae genetics isolation & purification physiology MeSH
- Phalaris microbiology physiology MeSH
- Polymerase Chain Reaction methods MeSH
- Soil Microbiology MeSH
- DNA, Ribosomal genetics MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Sequence Alignment MeSH
- Symbiosis MeSH
- Coal Mining MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH