Non-structural proteins
Dotaz
Zobrazit nápovědu
Picornaviruses are small positive-sense single-stranded RNA viruses that include many important human pathogens. Within the host cell, they replicate at specific replication sites called replication organelles. To create this membrane platform, they hijack several host factors including the acyl-CoA-binding domain-containing protein-3 (ACBD3). Here, we present a structural characterization of the molecular complexes formed by the non-structural 3A proteins from two species of the Kobuvirus genus of the Picornaviridae family and the 3A-binding domain of the host ACBD3 protein. Specifically, we present a series of crystal structures as well as a molecular dynamics simulation of the 3A:ACBD3 complex at the membrane, which reveals that the viral 3A proteins act as molecular harnesses to enslave the ACBD3 protein leading to its stabilization at target membranes. Our data provide a structural rationale for understanding how these viral-host protein complexes assemble at the atomic level and identify new potential targets for antiviral therapies.
- MeSH
- adaptorové proteiny signální transdukční chemie genetika metabolismus MeSH
- aminokyselinové motivy MeSH
- buněčné linie MeSH
- exprese genu MeSH
- interakce hostitele a patogenu * MeSH
- interakční proteinové domény a motivy MeSH
- klonování DNA MeSH
- Kobuvirus genetika metabolismus MeSH
- konformace proteinů, alfa-helix MeSH
- konformace proteinů, beta-řetězec MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- membránové proteiny chemie genetika metabolismus MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- replikace viru genetika MeSH
- simulace molekulární dynamiky MeSH
- stabilita proteinů MeSH
- unilamelární lipozómy chemie MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- virové nestrukturální proteiny chemie genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Coronavirus 2 (SARS- CoV-2) leads to Coronavirus disease 2019, is recognized as a lethal epidemic in 2020. SARS-CoV-2 is an enveloped, non-segmented, positive sense RNA virus that belongs to the beta-corona family of viruses. The genome of this virus is about 30 kb representing 16 non-structural proteins (Nsp1-16), four structural proteins (N, M, E, S) and nine accessory proteins are encoded by its genome, which are involved in survival and pathogenesis the viruses. In order to produce medicines and vaccines for SARS-CoV-2, it is essential to fully understand the genomic structure of the virus and function of its proteins. This review collects and investigates the functional properties of SARS-CoV-2 proteins that have been reported to date.
- MeSH
- COVID-19 * MeSH
- lidé MeSH
- SARS-CoV-2 MeSH
- virové proteiny * MeSH
- Check Tag
- lidé MeSH
The COVID-19 pandemic caused by SARS-CoV-2 virus has created a global damage and has exposed the vulnerable side of scientific research towards novel diseases. The intensity of the pandemic is huge, with mortality rates of more than 6 million people worldwide in a span of 2 years. Considering the gravity of the situation, scientists all across the world are continuously attempting to create successful therapeutic solutions to combat the virus. Various vaccination strategies are being devised to ensure effective immunization against SARS-CoV-2 infection. SARS-CoV-2 spreads very rapidly, and the infection rate is remarkably high than other respiratory tract viruses. The viral entry and recognition of the host cell is facilitated by S protein of the virus. N protein along with NSP3 is majorly responsible for viral genome assembly and NSP12 performs polymerase activity for RNA synthesis. In this study, we have designed a multi-epitope, chimeric vaccine considering the two structural (S and N protein) and two non-structural proteins (NSP3 and NSP12) of SARS-CoV-2 virus. The aim is to induce immune response by generating antibodies against these proteins to target the viral entry and viral replication in the host cell. In this study, computational tools were used, and the reliability of the vaccine was verified using molecular docking, molecular dynamics simulation and immune simulation studies in silico. These studies demonstrate that the vaccine designed shows steady interaction with Toll like receptors with good stability and will be effective in inducing a strong and specific immune response in the body.Communicated by Ramaswamy H. Sarma.
- MeSH
- COVID-19 * prevence a kontrola MeSH
- epitopy B-lymfocytární MeSH
- lidé MeSH
- pandemie prevence a kontrola MeSH
- reprodukovatelnost výsledků MeSH
- SARS-CoV-2 metabolismus MeSH
- simulace molekulového dockingu MeSH
- vakcíny proti COVID-19 MeSH
- virové vakcíny * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- finanční podpora výzkumu jako téma MeSH
- fluorescenční protilátková technika MeSH
- hybridomy imunologie MeSH
- ledviny virologie MeSH
- monoklonální protilátky diagnostické užití imunologie MeSH
- myši MeSH
- techniky in vitro MeSH
- virové nestrukturální proteiny imunologie MeSH
- virové strukturální proteiny imunologie MeSH
- viry klíšťové encefalitidy imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
Comparative evolutionary genomics has revealed that novel protein coding genes can emerge randomly from non-coding DNA. While most of the myriad of transcripts which continuously emerge vanish rapidly, some attain regulatory regions, become translated and survive. More surprisingly, sequence properties of de novo proteins are almost indistinguishable from randomly obtained sequences, yet de novo proteins may gain functions and integrate into eukaryotic cellular networks quite easily. We here discuss current knowledge on de novo proteins, their structures, functions and evolution. Since the existence of de novo proteins seems at odds with decade-long attempts to construct proteins with novel structures and functions from scratch, we suggest that a better understanding of de novo protein evolution may fuel new strategies for protein design.
- MeSH
- genomika MeSH
- molekulární evoluce * MeSH
- proteiny * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The coarse-grained Martini model is employed extensively to study membrane protein oligomerization. While this approach is exceptionally promising given its computational efficiency, it is alarming that a significant fraction of these studies demonstrate unrealistic protein clusters, whose formation is essentially an irreversible process. This suggests that the protein-protein interactions are exaggerated in the Martini model. If this held true, then it would limit the applicability of Martini to study multi-protein complexes, as the rapidly clustering proteins would not be able to properly sample the correct dimerization conformations. In this work we first demonstrate the excessive protein aggregation by comparing the dimerization free energies of helical transmembrane peptides obtained with the Martini model to those determined from FRET experiments. Second, we show that the predictions provided by the Martini model for the structures of transmembrane domain dimers are in poor agreement with the corresponding structures resolved using NMR. Next, we demonstrate that the first issue can be overcome by slightly scaling down the Martini protein-protein interactions in a manner, which does not interfere with the other Martini interaction parameters. By preventing excessive, irreversible, and non-selective aggregation of membrane proteins, this approach renders the consideration of lateral dynamics and protein-lipid interactions in crowded membranes by the Martini model more realistic. However, this adjusted model does not lead to an improvement in the predicted dimer structures. This implicates that the poor agreement between the Martini model and NMR structures cannot be cured by simply uniformly reducing the interactions between all protein beads. Instead, a careful amino-acid specific adjustment of the protein-protein interactions is likely required.
HMGB proteins are members of the High Mobility Group (HMG) superfamily, possessing a unique DNA-binding domain, the HMG-box, which can bind non-B-type DNA structures (bent, kinked and unwound) with high affinity, and also distort DNA by bending/looping and unwinding. HMGBs (there are four HMGBs in mammals, HMGB1-4) are highly abundant and ubiquitously expressed non-histone proteins, acting as DNA chaperones influencing multiple processes in chromatin such as transcription, replication, recombination, DNA repair and genomic stability. Although HMGB1 is a nuclear protein, it can be secreted into the extracellular milieu as a signaling molecule when cells are under stress, in particular, when necrosis occurs. Mammalian HMGBs contain two HMG-boxes arranged in tandem, share more than 80% identity and differ in the length (HMGB1-3) or absence (HMGB4) of the acidic C-tails. The acidic tails consist of consecutive runs of only Glu/Asp residues of various length, and modulate the DNA-binding properties and functioning of HMGBs. HMGBs are subject to post-translational modifications which can fine-tune interactions of the proteins with DNA/chromatin and determine their relocation from the nucleus to the cytoplasm and secretion. Association of HMGBs with chromatin is highly dynamic, and the proteins affect the chromatin fiber as architectural factors by transient interactions with nucleosomes, displacement of histone H1, and facilitation of nucleosome remodeling and accessibility of the nucleosomal DNA to transcription factors or other sequence-specific proteins.
- MeSH
- chromatin metabolismus MeSH
- DNA metabolismus MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- posttranslační úpravy proteinů MeSH
- proteiny HMGB chemie genetika metabolismus MeSH
- regulace genové exprese MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc.), the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGG)n, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2) and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.
- MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- DNA chemie metabolismus MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- promotorové oblasti (genetika) MeSH
- RNA chemie metabolismus MeSH
- stárnutí MeSH
- telomery MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH