Tau aggregation
Dotaz
Zobrazit nápovědu
Tauopathies are characterised by intracellular deposits of fibrillar tau tangles. However, the interneuronal spread of pathological tau species precedes the development of major tau burdens. Two amyloid motifs, VQIINK in repeat 2 and VQIVYK in repeat 3, of tau repeat domain, assemble into β-sheet-rich fibrils on their own but alone do not form seed-competent fibrils. In contrast, the entire R3 region self-aggregates and forms seed-competent fibrils. Our study aimed to identify the minimal regions in the tau repeat domain that define seeding and its impact on intracellular tau phosphorylation and aggregation. Using peptides of individual repeats, we show that R2, like R3, forms seed-competent fibrils when assembled in the presence of heparin. However, R3, but not R2, forms seed-competent fibrils when assembled without heparin, even though both R2 and R3 have identical N-terminal hexapeptide and cysteine residue sequences. Moreover, cysteine to alanine substitution in R3 abrogates its self-aggregation and seeding potency. Tau RD P301S biosensor cells and Tau P301L (0N4R)-expressing HEK293 cells seeded with R2 and R3 fibrils show the induction of pathological phosphorylation of tau at Ser262/Ser396/Ser404 positions and oligomerisation of native tau. Protein fractions of biosensor cells seeded with R2 and R3 fibrils reseed endogenous tau aggregation when introduced into a fresh set of biosensor cells. Our findings suggest that R3 may be the minimal region for pathological seed generation under physiological conditions, whereas R2 might need polyanionic cofactors to generate pathogenic seeds. Lastly, R2 and R3 fibrils induce template-induced misfolding and pathological hyperphosphorylation of intracellular tau, making intracellular tau seed-competent.
- MeSH
- Alzheimerova nemoc * metabolismus MeSH
- cystein MeSH
- HEK293 buňky MeSH
- heparin MeSH
- lidé MeSH
- proteiny tau genetika metabolismus MeSH
- tauopatie * metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Alzheimer's disease (AD) is characterised by the accumulation of intracytoplasmic aggregates of tau protein, which are suggested to spread in a prion-like manner between interconnected brain regions. This spreading is mediated by the secretion and uptake of tau from the extracellular space or direct cell-to-cell transmission through cellular protrusions. The prion-like tau then converts the endogenous, normal tau into pathological forms, resulting in neurodegeneration. The endoplasmic reticulum/Golgi-independent tau secretion through unconventional secretory pathways involves delivering misfolded and aggregated tau to the plasma membrane and its release into the extracellular space by non-vesicular and vesicular mechanisms. Although cytoplasmic tau was thought to be released only from degenerating cells, studies now show that cells constitutively secrete tau at low levels under physiological conditions. The mechanisms of secretion of tau under physiological and pathological conditions remain unclear. Therefore, a better understanding of these pathways is essential for developing therapeutic approaches that can target prion-like tau forms to prevent neurodegeneration progression in AD. This review focuses on unconventional secretion pathways involved in the spread of tau pathology in AD and presents these pathways as prospective areas for future AD drug discovery and development.
- MeSH
- Alzheimerova nemoc metabolismus patologie MeSH
- lidé MeSH
- mezibuněčná komunikace fyziologie MeSH
- mozek metabolismus patologie MeSH
- patologická konformace proteinů metabolismus patologie MeSH
- proteiny tau metabolismus MeSH
- tauopatie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The stability and dynamics of cytoskeleton in brain nerve cells are regulated by microtubule associated proteins (MAPs), tau and MAP2. Both proteins are intrinsically disordered and involved in multiple molecular interactions important for normal physiology and pathology of chronic neurodegenerative diseases. Nuclear magnetic resonance and cryo-electron microscopy recently revealed propensities of MAPs to form transient local structures and long-range contacts in the free state, and conformations adopted in complexes with microtubules and filamentous actin, as well as in pathological aggregates. In this paper, we compare the longest, 441-residue brain isoform of tau (tau40), and a 467-residue isoform of MAP2, known as MAP2c. For both molecules, we present transient structural motifs revealed by conformational analysis of experimental data obtained for free soluble forms of the proteins. We show that many of the short sequence motifs that exhibit transient structural features are linked to functional properties, manifested by specific interactions. The transient structural motifs can be therefore classified as molecular recognition elements of tau40 and MAP2c. Their interactions are further regulated by post-translational modifications, in particular phosphorylation. The structure-function analysis also explains differences between biological activities of tau40 and MAP2c.
Alzheimer's disease (AD), the most common type of dementia, currently represents an extremely challenging and unmet medical need worldwide. Amyloid-β (Aβ) and Tau proteins are prototypical AD hallmarks, as well as validated drug targets. Accumulating evidence now suggests that they synergistically contribute to disease pathogenesis. This could not only help explain negative results from anti-Aβ clinical trials but also indicate that therapies solely directed at one of them may have to be reconsidered. Based on this, herein, we describe the development of a focused library of 2,4-thiazolidinedione (TZD)-based bivalent derivatives as dual Aβ and Tau aggregation inhibitors. The aggregating activity of the 24 synthesized derivatives was tested in intact Escherichia coli cells overexpressing Aβ42 and Tau proteins. We then evaluated their neuronal toxicity and ability to cross the blood-brain barrier (BBB), together with the in vitro interaction with the two isolated proteins. Finally, the most promising (most active, nontoxic, and BBB-permeable) compounds 22 and 23 were tested in vivo, in a Drosophila melanogaster model of AD. The carbazole derivative 22 (20 μM) showed extremely encouraging results, being able to improve both the lifespan and the climbing abilities of Aβ42 expressing flies and generating a better outcome than doxycycline (50 μM). Moreover, 22 proved to be able to decrease Aβ42 aggregates in the brains of the flies. We conclude that bivalent small molecules based on 22 deserve further attention as hits for dual Aβ/Tau aggregation inhibition in AD.
- MeSH
- Alzheimerova nemoc * farmakoterapie MeSH
- Drosophila melanogaster MeSH
- Drosophila MeSH
- proteiny tau MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In Alzheimer's disease (AD), two mutually exclusive amino-terminal-dependent conformations have been reported to occur during the aggregation of Tau protein into neurofibrillary tangles (NFTs). An early conformation of full-length Tau, involving the bending of the amino terminus over the third repeated domain, is recognized by the Alz-50 antibody, followed by a second conformation recognized by Tau-66 antibody that depends on the folding of the proline-rich region over the third repeated domain in a molecule partially truncated at the amino- and carboxyl-termini. α-1-antichymotrypsin (ACT) is an acute phase serum glycoprotein that accumulates abnormally in the brain of AD patients, and since it is considered to promote the in vitro and in vivo aggregation of amyloid-β, we here seek further evidence that ACT may also contribute to the abnormal aggregation of Tau in AD. By analyzing brain samples from a population of AD cases under immunofluorescence and high-resolution confocal microscopy, we demonstrate here the abundant expression of ACT in hippocampal neurons, visualized as a granular diffuse accumulation, frequently reaching the nuclear compartment. In a significant number of these neurons, intracellular NFTs composed of abnormally phosphorylated and truncated Tau at Asp421 were also observed to coexist in separated regions of the cytoplasm. However, we found strong colocalization between ACT and diffuse aggregates of Tau-66-positive granules, which was not observed with Alz-50 antibody. These results suggest that ACT may play a role during the development of Tau conformational changes facilitating its aggregation during the formation of the neurofibrillary pathology in AD.
Emerging experimental evidence suggests tau pathology spreads between neuroanatomically connected brain regions in a prion-like manner in Alzheimer's disease (AD). Tau seeding, the ability of prion-like tau to recruit and misfold naïve tau to generate new seeds, is detected early in human AD brains before the development of major tau pathology. Many antitumour drugs have been reported to confer protection against neurodegeneration, supporting the repurposing of approved and experimental or investigational oncology drugs for AD therapy. In this study, we evaluated whether antitumour drugs that abrogate the generation of seed-competent aggregates of tau Repeat 3 (R3) domain peptides can prevent tau seeding and toxicity in Tau-RD P301S FRET Biosensor cells and Caenorhabditis elegans. We demonstrate that drugs that interact with the N-terminal VQIVYK or the C-terminal region housing the Cys322 prevent R3 dimerisation, abolishing the generation of prion-like R3 seeds. Preformed R3 seeds (fibrils) capped with, or R3 seeds formed in the presence of VQIVYK- or Cys322-targeting drugs have a reduced potency to cause aggregation of naïve tau in biosensor cells and protect worms from aggregate toxicity. These findings indicate that VQIVYK- or Cys322-targeting drugs may act as prophylactic agents against tau seeding.
Although tau protein was long regarded as an intracellular protein with several functions inside the cell, new evidence has shown tau secretion into the extracellular space. The active secretion of tau could be a physiological response of neurons to increased intracellular amounts of tau during the progression of tau pathology. We looked for potential differences in the serum levels of toxic tau oligomers in regards to cognitive impairment of subjects. We detected tau oligomers in the serum of Alzheimer's disease (AD) patients, but they were also present to some extent in the serum of healthy older subjects where the levels positively correlated with aging (Spearman r = 0.26, p = 0.016). On the contrary, we found lower levels of tau oligomers in the serum of mild cognitive impairment (MCI) (p = 0.033) and MCI-AD (p = 0.006) patients. These results could suggest that clearance of extracellular tau proteins takes place, in part, in the periphery. In the case of MCI patients, the lower levels of tau oligomers could be the result of impaired clearance of tau protein from interstitium to blood and consequent accumulation of tau aggregates in the brain.
- MeSH
- Alzheimerova nemoc krev komplikace MeSH
- amyloidní beta-protein krev MeSH
- ELISA MeSH
- kognitivní dysfunkce krev etiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- peptidové fragmenty krev MeSH
- proteiny tau krev chemie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stárnutí krev MeSH
- záznam o duševním stavu MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Tauopathies are a group of neurodegenerative diseases categorised into three types, 3R, 4R, or 3R+4R (mixed) tauopathies, based on the tau isoforms that make up the aberrant filaments. It is supposed that all six tau isoforms share functional characteristics. However, differences in the neuropathological features associated with different tauopathies offer the possibility that disease progression and tau accumulation may vary depending on the isoform composition. The presence or absence of repeat 2 (R2) in the microtubule-binding domain defines the type of isoform, which might influence tau pathology associated with a particular tau isoform. Therefore, our study aimed to identify the differences in the seeding propensities of R2 and repeat 3 (R3) aggregates using HEK293T biosensor cells. We show that the seeding induced by R2 was generally higher than by R3 aggregates, and lower concentrations of R2 aggregates are sufficient to induce seeding. Next, we found that both R2 and R3 aggregates dose-dependently increased triton-insoluble Ser262 phosphorylation of native tau, which is only visible in cells seeded with higher concentrations (12.5 nM or 100 nM) of R2 and R3 aggregates, despite the seeding by the lower concentrations of R2 aggregates after 72 h. However, the accumulation of triton-insoluble pSer262 tau was visible earlier in cells induced with R2 than in R3 aggregates. Our findings suggest that the R2 region may contribute to the early and enhanced induction of tau aggregation and define the difference in disease progression and neuropathology of 4R tauopathies.
Mass spectrometry coupled with bioaffinity separation techniques is considered a powerful tool for studying protein interactions. This work is focused on epitope analysis of tau protein, which contains two VQIXXK aggregation motifs regarded as crucial elements in the formation of paired helical filaments, the main pathological characteristics of Alzheimer's disease. To identify major immunogenic structures, the epitope extraction technique utilizing protein fragmentation and magnetic microparticles functionalized with specific antibodies was applied. However, the natural adhesiveness of some newly generated peptide fragments devalued the experimental results. Beside presumed peptide fragment specific to applied monoclonal anti-tau antibodies, the epitope extraction repeatedly revealed inter alia tryptic fragment 299-HVPGGGSVQIVYKPVDLSK-317 containing the fibril-forming motif 306-VQIVYK-311. The tryptic fragment pro-aggregation and hydrophobic properties that might contribute to adsorption phenomenon were examined by Thioflavin S and reversed-phase chromatography. Several conventional approaches to reduce the non-specific fragment sorption onto the magnetic particle surface were performed, however with no effect. To avoid methodological complications, we introduced an innovative approach based on altered proteolytic digestion. Simultaneous fragmentation of tau protein by two immobilized proteases differing in the cleavage specificity (TPCK-trypsin and α-chymotrypsin) led to the disruption of motif responsible for undesirable adhesiveness and enabled us to obtain undistorted structural data.
- MeSH
- adhezivita MeSH
- adsorpce MeSH
- Alzheimerova nemoc diagnóza MeSH
- aminokyselinové motivy MeSH
- biologické markery chemie MeSH
- chymotrypsin chemie MeSH
- epitopy chemie MeSH
- hmotnostní spektrometrie metody MeSH
- lidé MeSH
- magnetismus MeSH
- monoklonální protilátky chemie MeSH
- proteiny tau chemie MeSH
- proteolýza MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- thiazoly chemie MeSH
- trypsin chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Alzheimer´s disease (AD) is characterized by a progressive neuronal degeneration caused by two pathological hallmarks, hyperphosphorylated tau protein aggregated into tau filaments and amyloid precursor protein derived beta amyloid peptides aggregated into extracellular amyloid plaques. All attempts so far to find effective drugs failed in clinical trials. AD is a multifactorial disease, so that selective drugs to target one AD-relevant structure alone may not be sufficient. OBJECTIVE: We built novel furopyridines with various substitution patterns to evaluate them as protein kinases inhibitors of enzymes related to tau pathology. METHODS: Furopyridine derivatives were synthesized and purified using column chromatography. The protein kinase inhibitory properties were determined in ATP-competition assays with determined affinity constants for the most active compounds. RESULTS: The compounds were prepared in simple two-component reactions of substituted 1,4- dihydropyridines and respective quinones to obtain various substitutions of the molecular furopyridine scaffold. The substituent effects on the determined kinase inhibitory properties of cdk1, cdk2, Fyn, JNK3 and gsk-3β are discussed. CONCLUSION: Various 3-substitutions were found most sensitive for the protein kinase inhibition depending on the length, nature and a substituent positioning within. We identified compounds as inhibitors of several kinases as a tool to potentially combat the disease progress in a multitargeting approach.
- MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- fosforylace účinky léků MeSH
- inhibitory proteinkinas chemie farmakologie terapeutické užití MeSH
- kinasa glykogensynthasy 3beta metabolismus MeSH
- lidé MeSH
- proteinkinasy metabolismus MeSH
- proteiny tau metabolismus MeSH
- pyridiny chemie farmakologie terapeutické užití MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH