Termitoidae
Dotaz
Zobrazit nápovědu
Trail-following behavior is a key to ecological success of termites, allowing them to orient themselves between the nesting and foraging sites. This behavior is controlled by specific trail-following pheromones produced by the abdominal sternal gland occurring in all termite species and developmental stages. Trail-following communication has been studied in a broad spectrum of species, but the "higher" termites (i.e. Termitidae) from the subfamily Syntermitinae remain surprisingly neglected. To fill this gap, we studied the trail-following pheromone in six genera and nine species of Syntermitinae. Our chemical and behavioral experiments showed that (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol is the single component of the pheromone of all the termite species studied, except for Silvestritermes euamignathus. This species produces both (3Z,6Z)-dodeca-3,6-dien-1-ol and neocembrene, but only (3Z,6Z)-dodeca-3,6-dien-1-ol elicits trail-following behavior. Our results indicate the importance of (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol, the most widespread communication compound in termites, but also the repeated switches to other common pheromones as exemplified by S. euamignathus.
- MeSH
- feromony metabolismus MeSH
- Isoptera fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Despite their ecological importance, nothing is known about the diversity and abundance of RNA viruses in termites (Termitoidae). We used a metatranscriptomics approach to determine the RNA virome structure of 50 diverse species of termite that differ in both phylogenetic position and colony composition. From these samples, we identified 67 novel RNA viruses, characterized their genomes, quantified their abundance and inferred their evolutionary history. These viruses were found within or similar to those from the Togaviridae, Iflaviridae, Polycipiviridae, Flaviviridae, Leviviridae, Narnaviridae, Mitoviridae, Lispivirdae, Phasmaviridae, Picobirnaviridae and Partitiviridae. However, all viruses identified were novel and divergent, exhibiting only 20% to 45% amino acid identity to previously identified viruses. Our analysis suggested that 17 of the viruses identified were termite-infecting, with the remainder likely associated with the termite microbiome or diet. Unclassified sobemo-like and bunya-like viruses dominated termite viromes, while most of the phylogenetic diversity was provided by the picobirna- and mitovirus-like viruses. Of note was the identification of a novel flavi-like virus most closely related to those found in marine vertebrates and invertebrates. Notably, the sampling procedure had the strongest association with virome composition, with greater RNA virome diversity in libraries prepared from whole termite bodies than those that only sampled heads.