-
Autor
Berta, Imrich 1 Bezak, Branislav 1 Böhm, Allan 1 Cader, F Aaysha 1 El Tahlawi, Mohammad 1 Friebel, Julian 1 Gollmann-Tepeköylü, Can 1 Guerra, Federico 1 Huber, Kurt 1 Jajcay, Nikola 1 Jankova, Jana 1 Jarakovic, Milana 1 Kollarova, Marta 1 Krychtiuk, Konstantin A 1 Matetzky, Shlomi 1 Nägele, Felix 1 Petrikova, Katarina 1 Pogran, Edita 1 Pölzl, Leo 1 Segev, Amitai 1
-
Pracoviště
3rd Department of Cardiology National and Ka... 1 3rd Medical Department Cardiology and Intens... 1 Affiliated to the Sackler Faculty of Medicin... 1 Anesthesia and Intensive Care Fondazione Pol... 1 Berlin Institute of Health Charité Universit... 1 Cardiac Intensive Care Unit Institute for Ca... 1 Cardiology Department Emergency County Clini... 1 Cardiology and Arrhythmology Clinic Marche P... 1 Clinic of Cardiac Surgery National Institute... 1 Department for Cardiac Surgery Cardiac Regen... 1 Department of Acute Cardiology National Inst... 1 Department of Cardiology Angiology and Inten... 1 Department of Cardiology Faculty of Human Me... 1 Department of Cardiology Ibrahim Cardiac Hos... 1 Department of Clinical Surgical Diagnostic a... 1 Department of Complex Systems Institute of C... 1 Department of Internal Medicine 2 Division o... 1 Deutsches Zentrum für Herz Kreislauf Forschu... 1 Duke Clinical Research Institute Durham NC U... 1 Faculty of Medicine Comenius University in B... 1
- Formát
- Publikační typ
- Kategorie
- Jazyk
- Země
- Časopis/zdroj
- Dostupnost
- Vlastník
Thevathasan, Tharusan* Dotaz Zobrazit nápovědu
- Jajcay, Nikola
- Bezak, Branislav
- Segev, Amitai
- Matetzky, Shlomi
- Jankova, Jana
- Spartalis, Michael
- El Tahlawi, Mohammad
- Guerra, Federico
- Friebel, Julian
-
Thevathasan, Tharusan
Autor Thevathasan, Tharusan Department of Cardiology Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Berlin, Germany Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
NLK
Directory of Open Access Journals
od 2014
PubMed Central
od 2014
Europe PubMed Central
od 2014
Open Access Digital Library
od 2014-01-01
Open Access Digital Library
od 2014-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2014
PubMed
37034352
DOI
10.3389/fcvm.2023.1132680
Knihovny.cz E-zdroje
INTRODUCTION: Recent advances in machine learning provide new possibilities to process and analyse observational patient data to predict patient outcomes. In this paper, we introduce a data processing pipeline for cardiogenic shock (CS) prediction from the MIMIC III database of intensive cardiac care unit patients with acute coronary syndrome. The ability to identify high-risk patients could possibly allow taking pre-emptive measures and thus prevent the development of CS. METHODS: We mainly focus on techniques for the imputation of missing data by generating a pipeline for imputation and comparing the performance of various multivariate imputation algorithms, including k-nearest neighbours, two singular value decomposition (SVD)-based methods, and Multiple Imputation by Chained Equations. After imputation, we select the final subjects and variables from the imputed dataset and showcase the performance of the gradient-boosted framework that uses a tree-based classifier for cardiogenic shock prediction. RESULTS: We achieved good classification performance thanks to data cleaning and imputation (cross-validated mean area under the curve 0.805) without hyperparameter optimization. CONCLUSION: We believe our pre-processing pipeline would prove helpful also for other classification and regression experiments.
- Publikační typ
- časopisecké články MeSH
Upřesnit dle MeSH
Sdílet
Název dokumentu
Po ukončení testovacího provozu bude odkaz přesměrován adresu produkční verze portálu Medvik.