compartmentalization
Dotaz
Zobrazit nápovědu
116 s. : il.
The ribosome, owing to its exceptional conservation, harbours a remarkable molecular fossil known as the protoribosome. It surrounds the peptidyl transferase center (PTC), responsible for peptide bond formation. While previous studies have demonstrated the PTC activity in RNA alone, our investigation reveals the intricate roles of the ribosomal protein fragments (rPeptides) within the ribosomal core. This research highlights the significance of rPeptides in stability and coacervation of two distinct protoribosomal evolutionary stages. The 617nt 'big' protoribosome model, which associates with rPeptides specifically, exhibits a structurally defined and rigid nature, further stabilized by the peptides. In contrast, the 136nt 'small' model, previously linked to peptidyltransferase activity, displays greater structural flexibility. While this construct interacts with rPeptides with lower specificity, they induce coacervation of the 'small' protoribosome across a wide concentration range, which is concomitantly dependent on the RNA sequence and structure. Moreover, these conditions protect RNA from degradation. This phenomenon suggests a significant evolutionary advantage in the RNA-protein interaction at the early stages of ribosome evolution. The distinct properties of the two protoribosomal stages suggest that rPeptides initially provided compartmentalization and prevented RNA degradation, preceding the emergence of specific RNA-protein interactions crucial for the ribosomal structural integrity.
- MeSH
- konformace nukleové kyseliny MeSH
- molekulární modely MeSH
- peptidy chemie metabolismus MeSH
- peptidyltransferasy metabolismus chemie MeSH
- ribozomální proteiny * metabolismus chemie MeSH
- ribozomy * metabolismus MeSH
- RNA metabolismus chemie MeSH
- stabilita RNA MeSH
- Publikační typ
- časopisecké články MeSH
The transition zone (TZ) of eukaryotic cilia and flagella is a structural intermediate between the basal body and the axoneme that regulates ciliary traffic. Mutations in genes encoding TZ proteins (TZPs) cause human inherited diseases (ciliopathies). Here, we use the trypanosome to identify TZ components and localize them to TZ subdomains, showing that the Bardet-Biedl syndrome complex (BBSome) is more distal in the TZ than the Meckel syndrome (MKS) complex. Several of the TZPs identified here have human orthologs. Functional analysis shows essential roles for TZPs in motility, in building the axoneme central pair apparatus and in flagellum biogenesis. Analysis using RNAi and HaloTag fusion protein approaches reveals that most TZPs (including the MKS ciliopathy complex) show long-term stable association with the TZ, whereas the BBSome is dynamic. We propose that some Bardet-Biedl syndrome and MKS pleiotropy may be caused by mutations that impact TZP complex dynamics.
- MeSH
- Bardetův-Biedlův syndrom genetika metabolismus MeSH
- bazální tělíska metabolismus ultrastruktura MeSH
- cilie genetika metabolismus MeSH
- ciliopatie genetika metabolismus MeSH
- cytoskelet metabolismus ultrastruktura MeSH
- encefalokéla genetika metabolismus MeSH
- flagella genetika metabolismus ultrastruktura MeSH
- fluorescenční mikroskopie MeSH
- kompartmentace buňky MeSH
- lidé MeSH
- mutace MeSH
- polycystická choroba ledvin genetika metabolismus MeSH
- poruchy ciliární motility genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA interference MeSH
- transmisní elektronová mikroskopie MeSH
- Trypanosoma genetika metabolismus ultrastruktura MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The TCR signal transduction is initiated by the activation of Src-family kinases (SFK) which phosphorylate Immunoreceptor tyrosine-based activation motifs (ITAM) present in the intracellular parts of the T-cell receptor (TCR) signaling subunits. Numerous data suggest that after stimulation TCR interacts with membrane rafts and thus it gains access to SFK and other important molecules involved in signal transduction. However, the precise mechanism of this process is unclear. One of the key questions is how SFK access TCR and what is the importance of non-raft and membrane raft-associated SFK for the initiation and maintenance of the TCR signaling. To answer this question we targeted a negative regulator of SFK, C-terminal Src kinase (Csk) to membrane rafts, recently described "heavy rafts" or non-raft membrane. Our data show that only Csk targeted into "classical" raft but not to "heavy raft" or non-raft membrane effectively inhibits TCR signaling, demonstrating the critical role of membrane raft-associated SFK in this process.
- MeSH
- buněčná membrána metabolismus MeSH
- fosforylace MeSH
- imunoblotting MeSH
- kultivované buňky MeSH
- lidé MeSH
- membránové mikrodomény MeSH
- protoonkogenní proteiny metabolismus MeSH
- receptory antigenů T-buněk metabolismus MeSH
- signální transdukce MeSH
- tyrosinkinasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Trastuzumab is effective in about half of HER2-positive breast cancer patients. The PI3K/Akt signalling pathway plays an important role in the process of primary and secondary resistance to anti-HER2 targeted therapy. We evaluated the relationship between expression, activation and subcellular localization of selected Akt isoforms and response to trastuzumab-based anti-HER2 targeted therapy in patients with HER2-positive metastatic breast cancer. Seventy-four women with verified HER2-positive breast cancer were treated with trastuzumab for metastatic disease. Immunohistochemistry was used to evaluate Akt1, Akt2, pAkt Thr308 and pAkt Ser473 expression. For pAkt, cytoplasmic and nuclear fractions were assessed separately. Even though Akt isoforms were expressed in the majority of tumours, activated Akt (pAkt) was present in the cytoplasm only and not in the nucleus in >20% of tumours, and there was no pAkt at all in another 7-13% of tumours. Patients whose tumours showed strong Akt2 expression and had pAkt (pAkt-Thr308 and/or pAkt-Ser473) detectable in the cytoplasm as well as nucleus (n+c), exhibited improved time to progression (TTP) and overall survival from the initiation of trastuzumab therapy (OSt). Patients with tumours with strong Akt2 and pAkt Thr308 (n+c) had superior TTP (17.0 vs. 7.6 months, P=0.024; HR 0.52) and OSt (51.8 vs. 16.8 months, P=0.0009; HR 0.34) compared to other tumours. Similar results were found for strong Akt2 and pAkt Ser473 (n+c): TTP 13.1 vs. 7.2 months (P=0.085, HR 0.62) and OSt 50.8 vs. 17.0 months (P=0.009; HR 0.45). This study is the first to prove the significance of Akt kinase isoform, activity and compartmentalization for the prediction of response to trastuzumab-based therapy in patients with HER2-positive metastatic breast cancer.
- MeSH
- dospělí MeSH
- humanizované monoklonální protilátky aplikace a dávkování MeSH
- kompartmentace buňky MeSH
- lidé středního věku MeSH
- lidé MeSH
- metastázy nádorů farmakoterapie genetika patologie MeSH
- nádory prsu farmakoterapie genetika patologie MeSH
- prognóza MeSH
- protoonkogenní proteiny c-akt biosyntéza MeSH
- receptor erbB-2 MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- senioři MeSH
- signální transdukce účinky léků MeSH
- staging nádorů MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nuclear phosphoinositides are recognized as regulators of many nuclear processes including chromatin remodeling, splicing, transcription, DNA repair and epigenetics. These processes are spatially organized in different nuclear compartments. Phase separation is involved in the formation of various nuclear compartments and molecular condensates separated from surrounding environment. The surface of such structures spatiotemporally coordinates formation of protein complexes. PI(4,5)P2 (PIP2) integration into phase-separated structures might provide an additional step in their spatial diversification by attracting certain proteins with affinity to PIP2. Our laboratory has recently identified novel membrane-free PIP2-containing structures, so called Nuclear Lipid Islets (NLIs). We provide an evidence that these structures are evolutionary conserved in different organisms. We hypothesize that NLIs serve as a scaffolding platform which facilitates the formation of transcription factories, thus participating in the formation of nuclear architecture competent for transcription. In this review we speculate on a possible role of NLIs in the integration of various processes linked to RNAPII transcription, chromatin remodeling, actin-myosin interaction, alternative splicing and lamin structures.