pathogen‐driven selection
Dotaz
Zobrazit nápovědu
Human leukocyte antigen (HLA) genes play a key role in the immune response to infectious diseases, some of which are highly prevalent in specific environments, like malaria in sub-Saharan Africa. Former case-control studies showed that one particular HLA-B allele, B*53, was associated with malaria protection in Gambia, but this hypothesis was not tested so far within a population genetics framework. In this study, our objective was to assess whether pathogen-driven selection associated with malaria contributed to shape the HLA-B genetic landscape of Africa. To that aim, we first typed the HLA-A and -B loci in 484 individuals from 11 populations living in different environments across the Sahel, and we analysed these data together with those available for 29 other populations using several approaches including linear modelling on various genetic, geographic and environmental parameters. In addition to relevant signatures of populations' demography and migrations history in the genetic differentiation patterns of both HLA-A and -B loci, we found that the frequencies of three HLA alleles, B*53, B*78 and A*74, were significantly associated with Plasmodium falciparum malaria prevalence, suggesting their increase through pathogen-driven selection in malaria-endemic environments. The two HLA-B alleles were further identified, by high-throughput sequencing, as B*53:01:01 (in putative linkage disequilibrium with one HLA-C allele, C*04:01:01:01) and B*78:01 in all but one individuals tested, making them appropriate candidates to malaria protection. These results highlight the role of environmental factors in the evolution of the HLA polymorphism and open key perspectives for functional studies focusing on HLA peptide-binding properties.
- MeSH
- alely MeSH
- HLA-B antigeny genetika MeSH
- lidé MeSH
- odolnost vůči nemocem genetika MeSH
- populační genetika * MeSH
- tropická malárie genetika MeSH
- vazebná nerovnováha MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- subsaharská Afrika MeSH
BACKGROUND: The mammalian Major Histocompatibility Complex (MHC) is a genetic region containing highly polymorphic genes with immunological functions. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. The MHC class II sub-region contains genes expressed in antigen presenting cells. The antigen binding site is encoded by the second exon of genes encoding antigen presenting molecules. The exon 2 sequences of these MHC genes have evolved under the selective pressure of pathogens. Interspecific differences can be observed in the class II sub-region. The family Equidae includes a variety of domesticated, and free-ranging species inhabiting a range of habitats exposed to different pathogens and represents a model for studying this important part of the immunogenome. While equine MHC class II DRA and DQA loci have received attention, the genetic diversity and effects of selection on DRB and DQB loci have been largely overlooked. This study aimed to provide the first in-depth analysis of the MHC class II DRB and DQB loci in the Equidae family. RESULTS: Three DRB and two DQB genes were identified in the genomes of all equids. The genes DRB2, DRB3 and DQB3 showed high sequence conservation, while polymorphisms were more frequent at DRB1 and DQB1 across all species analyzed. DQB2 was not found in the genome of the Asiatic asses Equus hemionus kulan and E. h. onager. The bioinformatic analysis of non-zero-coverage-bases of DRB and DQB genes in 14 equine individual genomes revealed differences among individual genes. Evidence for recombination was found for DRB1, DRB2, DQB1 and DQB2 genes. Trans-species allele sharing was identified in all genes except DRB1. Site-specific selection analysis predicted genes evolving under positive selection both at DRB and DQB loci. No selected amino acid sites were identified in DQB3. CONCLUSIONS: The organization of the MHC class II sub-region of equids is similar across all species of the family. Genomic sequences, along with phylogenetic trees suggesting effects of selection as well as trans-species polymorphism support the contention that pathogen-driven positive selection has shaped the MHC class II DRB/DQB sub-regions in the Equidae.
- MeSH
- Equidae klasifikace genetika MeSH
- fylogeneze MeSH
- hlavní histokompatibilní komplex genetika MeSH
- molekulární evoluce * MeSH
- polymorfismus genetický * MeSH
- rekombinace genetická MeSH
- selekce (genetika) * MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Charcot-Marie-Tooth disease (CMT) is an umbrella term for inherited neuropathies affecting an estimated one in 2,500 people. Over 120 CMT and related genes have been identified and clinical gene panels often contain more than 100 genes. Such a large genomic space will invariantly yield variants of uncertain clinical significance (VUS) in nearly any person tested. This rise in number of VUS creates major challenges for genetic counseling. Additionally, fewer individual variants in known genes are being published as the academic merit is decreasing, and most testing now happens in clinical laboratories, which typically do not correlate their variants with clinical phenotypes. For CMT, we aim to encourage and facilitate the global capture of variant data to gain a large collection of alleles in CMT genes, ideally in conjunction with phenotypic information. The Inherited Neuropathy Variant Browser provides user-friendly open access to currently reported variation in CMT genes. Geneticists, physicians, and genetic counselors can enter variants detected by clinical tests or in research studies in addition to genetic variation gathered from published literature, which are then submitted to ClinVar biannually. Active participation of the broader CMT community will provide an advance over existing resources for interpretation of CMT genetic variation.
- MeSH
- alely MeSH
- charakteristiky bydlení * MeSH
- Charcotova-Marieova-Toothova nemoc genetika MeSH
- genetická variace * MeSH
- internet * MeSH
- lidé MeSH
- uživatelské rozhraní počítače MeSH
- vyhledávač MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The life cycle of spirochetes of the genus Borrelia includes complex networks of vertebrates and ticks. The tripartite association of Borrelia-vertebrate-tick has proved ecologically successful for these bacteria, which have become some of the most prominent tick-borne pathogens in the northern hemisphere. To keep evolutionary pace with its double-host life history, Borrelia must adapt to the evolutionary pressures exerted by both sets of hosts. In this review, we attempt to reconcile functional, phylogenetic, and ecological perspectives to propose a coherent scenario of Borrelia evolution. Available empirical information supports that the association of Borrelia with ticks is very old. The major split between the tick families Argasidae-Ixodidae (dated some 230-290 Mya) resulted in most relapsing fever (Rf) species being restricted to Argasidae and few associated with Ixodidae. A further key event produced the diversification of the Lyme borreliosis (Lb) species: the radiation of ticks of the genus Ixodes from the primitive stock of Ixodidae (around 217 Mya). The ecological interactions of Borrelia demonstrate that Argasidae-transmitted Rf species remain restricted to small niches of one tick species and few vertebrates. The evolutionary pressures on this group are consequently low, and speciation processes seem to be driven by geographical isolation. In contrast to Rf, Lb species circulate in nested networks of dozens of tick species and hundreds of vertebrate species. This greater variety confers a remarkably variable pool of evolutionary pressures, resulting in large speciation of the Lb group, where different species adapt to circulate through different groups of vertebrates. Available data, based on ospA and multilocus sequence typing (including eight concatenated in-house genes) phylogenetic trees, suggest that ticks could constitute a secondary bottleneck that contributes to Lb specialization. Both sets of adaptive pressures contribute to the resilience of highly adaptable meta-populations of bacteria.
- MeSH
- biologická adaptace MeSH
- biologická evoluce * MeSH
- Borrelia klasifikace fyziologie MeSH
- infekce přenášené vektorem * MeSH
- interakce hostitele a patogenu MeSH
- klíšťata mikrobiologie MeSH
- lidé MeSH
- lymeská nemoc mikrobiologie přenos MeSH
- selekce (genetika) MeSH
- zdroje nemoci * mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The major histocompatibility complex (MHC) genes coding for antigen presenting molecules are the most polymorphic genes in vertebrate genome. The MHC class II DRA gene shows only small variation in many mammalian species, but it exhibits relatively high level of polymorphism in Equidae, especially in donkeys. This extraordinary degree of polymorphism together with signatures of selection in specific amino acids sites makes the donkey DRA gene a suitable model for population diversity studies. The objective of this study was to investigate the DRA gene diversity in three different populations of donkeys under infectious pressure of protozoan parasites, Theileria equi and Babesia caballi. Three populations of domestic donkeys from Italy (N = 68), Jordan (N = 43), and Kenya (N = 78) were studied. A method of the donkey MHC DRA genotyping based on PCR-RFLP and sequencing was designed. In addition to the DRA gene, 12 polymorphic microsatellite loci were genotyped. The presence of Theileria equi and Babesia caballi parasites in peripheral blood was investigated by PCR. Allele and genotype frequencies, observed and expected heterozygosities and F(IS) values were computed as parameters of genetic diversity for all loci genotyped. Genetic distances between the three populations were estimated based on F(ST) values. Statistical associations between parasite infection and genetic polymorphisms were sought. Extensive DRA locus variation characteristic for Equids was found. The results showed differences between populations both in terms of numbers of alleles and their frequencies as well as variation in expected heterozygosity values. Based on comparisons with neutral microsatellite loci, population sub-structure characteristics and association analysis, convincing evidence of pathogen-driven selection at the population level was not provided. It seems that genetic diversity observed in the three populations reflects mostly effects of selective breeding and their different genetic origins.
- MeSH
- babezióza epidemiologie veterinární MeSH
- demografie MeSH
- Equidae genetika metabolismus MeSH
- genetická variace MeSH
- genotyp MeSH
- geny MHC třídy II genetika MeSH
- mikrosatelitní repetice MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
- Asie MeSH
- Evropa MeSH
The human pathogens Plasmodium and Schistosoma are each responsible for over 200 million infections annually, especially in low- and middle-income countries. There is a pressing need for new drug targets for these diseases, driven by emergence of drug-resistance in Plasmodium and an overall dearth of drug targets against Schistosoma. Here, we explored the opportunity for pathogen-hopping by evaluating a series of quinoxaline-based anti-schistosomal compounds for their activity against P. falciparum. We identified compounds with low nanomolar potency against 3D7 and multidrug-resistant strains. In vitro resistance selections using wildtype and mutator P. falciparum lines revealed a low propensity for resistance. Only one of the series, compound 22, yielded resistance mutations, including point mutations in a non-essential putative hydrolase pfqrp1, as well as copy number amplification of a phospholipid-translocating ATPase, pfatp2, a potential target. Notably, independently generated CRISPR-edited mutants in pfqrp1 also showed resistance to compound 22 and a related analogue. Moreover, previous lines with pfatp2 copy number variations were similarly less susceptible to challenge with the new compounds. Finally, we examined whether the predicted hydrolase activity of PfQRP1 underlies its mechanism of resistance, showing that both mutation of the putative catalytic triad and a more severe loss of function mutation elicited resistance. Collectively, we describe a compound series with potent activity against two important pathogens and their potential target in P. falciparum.
- MeSH
- antimalarika * farmakologie MeSH
- chinoxaliny * farmakologie MeSH
- léková rezistence účinky léků MeSH
- lidé MeSH
- Plasmodium falciparum * účinky léků MeSH
- protozoální proteiny metabolismus genetika MeSH
- Schistosoma účinky léků MeSH
- schistosomóza farmakoterapie MeSH
- tropická malárie farmakoterapie parazitologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
... Principles of innate immunity. 1-1 Commensal organisms cause little host damage while pathogens damage ... ... tissues by a variety of mechanisms. 1 -2 Anatomic and chemical barriers are the first defense against pathogens ... ... . 1 -3 The immune system is activated by inflammatory inducers that indicate the presence of pathogens ... ... from several effector modules to protect against different types of pathogens. 26 -- 1-20 Antibodies ... ... . 410 -- 10-8 Positive selection of germinal center ? ...
9th edition xx, 904 stran : ilustrace, tabulky ; 28 cm
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- alergologie a imunologie
- biologie
- fyziologie
- NLK Publikační typ
- kolektivní monografie
... -- Important Concepts for Understanding the Mammalian Immune Response • Pathogens Come in Many Forms ... ... Cells Undergo Positive and Negative Selection • Positive Selection Ensures MHC Restriction • Negative ... ... Selection (Central Tolerance) Ensures Self-Tolerance • The Selection Paradox: Why Don\'t We Delete ... ... All Cells We Positively Select? ... ... 310 -- Do Positive and Negative Selection Occur at the Same Stage of Development, or in Sequence? ...
Eight edition různé stránkování : barevné ilustrace ; 28 cm
... organisms. 61 -- 2-12 Surface-bound C3 convertase deposits large numbers of -- C3b fragments on pathogen ... ... surfaces and generates C5 convertase activity. 62 -- 2-13 Ingestion of complement-tagged pathogens by ... ... system. 85 -- 3-5 Mammalian Toll-like receptors are activated by many different pathogen-associated ... ... or cell death intervenes. 304 -- Summary. 305 -- Positive and negative selection of T cells. 305 -- ... ... and/or the strength of signals for negative and positive selection must differ. 314 -- Summary. 315 ...
8th ed. xix, 868 s. : il., tab.
- MeSH
- imunita MeSH
- imunitní systém MeSH
- imunoterapie MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- alergologie a imunologie
- biologie
... Short Scrub 49 Short Standard Handwash 49 Surgical Scrub 50 Gloves and Gloving 50 -- Criteria for Selection ... ... 298 Scoring 299 Plaque-Free Score 299 Purpose 299 -- Selection of Teeth and Surfaces 300 Procedure 300 ... ... Scoring 300 -- Patient Hygiene Performance (PHP) 302 Purpose 302 -- Selection of Teeth and Surfaces ... ... Device 381 Non-Power-Driven Device 381 Delivery Methods 381 Standard Jet Tip 381 -- Specialized Tips ... ... and Preparation of Wood Points 620 Use of Porte Polisher 620 Selective Stain Removal 621 Evaluation ...
Eighth edition xxxvii, 990 stran : ilustrace ; 29 cm
- MeSH
- klinické lékařství MeSH
- orální hygiena MeSH
- podpora zdraví MeSH
- preventivní zubní lékařství MeSH
- stomatologická péče MeSH
- zubní hygienici MeSH
- zubní prevence MeSH
- Konspekt
- Stomatologie
- NLK Obory
- zubní lékařství
- hygiena
- NLK Publikační typ
- kolektivní monografie